Skip to main content

Advertisement

Log in

Bioinformatic identification and validation of autophagy-related genes in rheumatoid arthritis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objectives

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder characterized by progressive synovial inflammation and joint destruction, with a largely unknown etiology. Studies have suggested that autophagy and its expression may be involved in the pathogenesis of RA; however, autophagy-related genes in RA are still largely unidentified. Therefore, in this study, we aimed to identify and validate autophagy-related genes in RA.

Methods

We identified differentially expressed autophagy-related genes between patients with RA and healthy individuals using gene expression profiles in the GSE55235 dataset and R software. Subsequently, correlation analysis, protein–protein interaction, gene ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were carried out using these differentially expressed autophagy-related genes. Finally, our results were validated by examining the expression of differentially expressed autophagy-related hub genes in clinical samples using qRT-PCR.

Results

We identified 52 potential autophagy-related genes in RA based on bioinformatic analyses. Ten hub genes, CASP8, CTSB, TNFSF10, FADD, BAX, MYC, FOS, CDKN1A, GABARAPL1, and BNIP3, were validated to be differentially expressed and may serve as valuable prognostic markers and new potential therapeutic targets for RA via the regulation of autophagy.

Conclusions

Our results may help improve the understanding of RA pathogenesis. Autophagy-related genes in RA could be valuable biomarkers for diagnosis and prognosis and they might be exploited clinically as therapeutic targets in the future.

Key Points

• CASP8, CTSB, TNFSF10, FADD, BAX, MYC, FOS, CDKN1A, GABARAPL1, and BNIP3 may be autophagy-related hub genes correlated with the pathogenesis of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wei K, Nguyen HN, Brenner MB (2021) Fibroblast pathology in inflammatory diseases. J Clin Invest 131(20). https://doi.org/10.1172/JCI149538

  2. Zhao J, Jiang P, Guo S et al (2021) Apoptosis, autophagy, NETosis, necroptosis, and pyroptosis mediated programmed cell death as targets for innovative therapy in rheumatoid arthritis. Front Immunol 12:809806. https://doi.org/10.3389/fimmu.2021.809806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jin M, Zhang Y (2020) Autophagy and autoimmune diseases. Adv Exp Med Biol 1207:405–408. https://doi.org/10.1007/978-981-15-4272-5_28

    Article  CAS  PubMed  Google Scholar 

  4. Martinez J, Cunha LD, Park S et al (2016) Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature 533:115–119. https://doi.org/10.1038/nature17950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dumit VI, Kuttner V, Kappler J et al (2014) Altered MCM protein levels and autophagic flux in aged and systemic sclerosis dermal fibroblasts. J Invest Dermatol 134:2321–2330. https://doi.org/10.1038/jid.2014.69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frech T, De Domenico I, Murtaugh MA et al (2014) Autophagy is a key feature in the pathogenesis of systemic sclerosis. Rheumatol Int 34:435–439. https://doi.org/10.1007/s00296-013-2827-8

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Vasheghani F, Li YH et al (2015) Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis. Ann Rheum Dis 74:1432–1440. https://doi.org/10.1136/annrheumdis-2013-204599

    Article  CAS  PubMed  Google Scholar 

  8. Karami J, Masoumi M, Khorramdelazad H et al (2020) Role of autophagy in the pathogenesis of rheumatoid arthritis: latest evidence and therapeutic approaches. Life Sci 254:117734. https://doi.org/10.1016/j.lfs.2020.117734

    Article  CAS  PubMed  Google Scholar 

  9. Woetzel D, Huber R, Kupfer P et al (2014) Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation. Arthritis Res Ther 16:R84. https://doi.org/10.1186/ar4526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kasai M, Tanida I, Ueno T et al (2009) Autophagic compartments gain access to the MHC class II compartments in thymic epithelium. J Immunol 183:7278–7285. https://doi.org/10.4049/jimmunol.0804087

    Article  CAS  PubMed  Google Scholar 

  11. Ciccacci C, Perricone C, Alessandri C et al (2018) Evaluation of ATG5 polymorphisms in Italian patients with systemic lupus erythematosus: contribution to disease susceptibility and clinical phenotypes. Lupus 27:1464–1469. https://doi.org/10.1177/0961203318776108

    Article  CAS  PubMed  Google Scholar 

  12. International Consortium for Systemic Lupus Erythematosus G, Harley JB, Alarcon-Riquelme ME et al (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 40:204–210. https://doi.org/10.1038/ng.81

    Article  CAS  Google Scholar 

  13. Kamel AM, Badary MS, Mohamed WA et al (2020) Evaluation of autophagy-related genes in Egyptian systemic lupus erythematosus patients. Int J Rheum Dis 23:1226–1232. https://doi.org/10.1111/1756-185X.13910

    Article  CAS  PubMed  Google Scholar 

  14. Mahil SK, Twelves S, Farkas K et al (2016) AP1S3 Mutations cause skin autoinflammation by disrupting keratinocyte autophagy and up-regulating IL-36 production. J Invest Dermatol 136:2251–2259. https://doi.org/10.1016/j.jid.2016.06.618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Igci M, Baysan M, Yigiter R et al (2016) Gene expression profiles of autophagy-related genes in multiple sclerosis. Gene 588:38–46. https://doi.org/10.1016/j.gene.2016.04.042

    Article  CAS  PubMed  Google Scholar 

  16. Sorice M, Iannuccelli C, Manganelli V et al (2016) Autophagy generates citrullinated peptides in human synoviocytes: a possible trigger for anti-citrullinated peptide antibodies. Rheumatology (Oxford) 55:1374–1385. https://doi.org/10.1093/rheumatology/kew178

    Article  CAS  PubMed  Google Scholar 

  17. Manganelli V, Recalchi S, Capozzi A et al (2018) Autophagy induces protein carbamylation in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Rheumatology (Oxford) 57:2032–2041. https://doi.org/10.1093/rheumatology/key174

    Article  CAS  PubMed  Google Scholar 

  18. An Q, Yan W, Zhao Y et al (2018) Enhanced neutrophil autophagy and increased concentrations of IL-6, IL-8, IL-10 and MCP-1 in rheumatoid arthritis. Int Immunopharmacol 65:119–128. https://doi.org/10.1016/j.intimp.2018.09.011

    Article  CAS  PubMed  Google Scholar 

  19. van Loosdregt J, Rossetti M, Spreafico R et al (2016) Increased autophagy in CD4(+) T cells of rheumatoid arthritis patients results in T-cell hyperactivation and apoptosis resistance. Eur J Immunol 46:2862–2870. https://doi.org/10.1002/eji.201646375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kato M, Ospelt C, Gay RE et al (2014) Dual role of autophagy in stress-induced cell death in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol 66:40–48. https://doi.org/10.1002/art.38190

    Article  CAS  PubMed  Google Scholar 

  21. Huang RZ, Zheng J, Liu FL et al (2021) A novel autophagy-related marker for improved differential diagnosis of rheumatoid arthritis and osteoarthritis. Front Genet 12:743560. https://doi.org/10.3389/fgene.2021.743560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar P, Yao LJ, Saidin S et al (2018) Molecular mechanisms of autophagic memory in pathogenic T cells in human arthritis. J Autoimmun 94:90–98. https://doi.org/10.1016/j.jaut.2018.07.014

    Article  CAS  PubMed  Google Scholar 

  23. Xu C, Vitone GJ, Inoue K et al (2019) Identification of a novel role for Foxo3 Isoform2 in osteoclastic inhibition. J Immunol 203:2141–2149. https://doi.org/10.4049/jimmunol.1900707

    Article  CAS  PubMed  Google Scholar 

  24. Dai Y, Ding J, Yin W et al (2018) Increased autophagy enhances the resistance to tumor necrosis factor-alpha treatment in rheumatoid arthritis human fibroblast-like synovial cell. Biomed Res Int 2018:4941027. https://doi.org/10.1155/2018/4941027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu L, Wang H, Wu Y et al (2017) The autophagy level is increased in the synovial tissues of patients with active rheumatoid arthritis and is correlated with disease severity. Mediators Inflamm 2017:7623145. https://doi.org/10.1155/2017/7623145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okada Y, Wu D, Trynka G et al (2014) Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506:376–381. https://doi.org/10.1038/nature12873

    Article  CAS  PubMed  Google Scholar 

  27. Wang H, Wang Z, Wang L et al (2020) IL-6 promotes collagen-induced arthritis by activating the NLRP3 inflammasome through the cathepsin B/S100A9-mediated pathway. Int Immunopharmacol 88:106985. https://doi.org/10.1016/j.intimp.2020.106985

    Article  CAS  PubMed  Google Scholar 

  28. Singh AK, Haque M, Madarampalli B et al (2021) Ets-2 propagates IL-6 trans-signaling mediated osteoclast-like changes in human rheumatoid arthritis synovial fibroblast. Front Immunol 12:746503. https://doi.org/10.3389/fimmu.2021.746503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang X, Wang J, Liu C et al (2005) Cleavage of p53-vimentin complex enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis of rheumatoid arthritis synovial fibroblasts. Am J Pathol 167:705–719. https://doi.org/10.1016/S0002-9440(10)62045-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mouasni S, Gonzalez V, Schmitt A et al (2019) The classical NLRP3 inflammasome controls FADD unconventional secretion through microvesicle shedding. Cell Death Dis 10:190. https://doi.org/10.1038/s41419-019-1412-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Misra S, Bagchi A, Sarkar A et al (2021) Methotrexate and theaflavin-3, 3’-digallate synergistically restore the balance between apoptosis and autophagy in synovial fibroblast of RA: an ex vivo approach with cultured human RA FLS. Inflammopharmacology 29:1427–1442. https://doi.org/10.1007/s10787-021-00857-0

    Article  CAS  PubMed  Google Scholar 

  32. Lee YZ, Guo HC, Zhao GH et al (2020) Tylophorine-based compounds are therapeutic in rheumatoid arthritis by targeting the caprin-1 ribonucleoprotein complex and inhibiting expression of associated c-Myc and HIF-1alpha. Pharmacol Res 152:104581. https://doi.org/10.1016/j.phrs.2019.104581

    Article  CAS  PubMed  Google Scholar 

  33. Yamashita T, Yao Z, Li F et al (2007) NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem 282:18245–18253. https://doi.org/10.1074/jbc.M610701200

    Article  CAS  PubMed  Google Scholar 

  34. Gang X, Xu H, Si L et al (2018) Treatment effect of CDKN1A on rheumatoid arthritis by mediating proliferation and invasion of fibroblast-like synoviocytes cells. Clin Exp Immunol 194:220–230. https://doi.org/10.1111/cei.13161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim JK, Kim YS, Lee HM et al (2018) GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections. Nat Commun 9:4184. https://doi.org/10.1038/s41467-018-06487-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kammouni W, Wong K, Ma G et al (2007) Regulation of apoptosis in fibroblast-like synoviocytes by the hypoxia-induced Bcl-2 family member Bcl-2/adenovirus E1B 19-kd protein-interacting protein 3. Arthritis Rheum 56:2854–2863. https://doi.org/10.1002/art.22853

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Nature Science Foundation of China (grant number 82071752).

Author information

Authors and Affiliations

Authors

Contributions

Q-h Y and D-d F designed the experiments; D-d F and P-y T collected and analyzed the data; L J and P-y T collected the clinical samples and performed the molecular experiments; D-d F wrote the manuscript; Q-h Yu and Y Q revised this paper.

Corresponding author

Correspondence to Qing-hong Yu.

Ethics declarations

Disclosures

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 654 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Dd., Tan, Py., Jin, L. et al. Bioinformatic identification and validation of autophagy-related genes in rheumatoid arthritis. Clin Rheumatol 42, 741–750 (2023). https://doi.org/10.1007/s10067-022-06399-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-022-06399-2

Keywords

Navigation