Skip to main content

Advertisement

Log in

Elevated serum interleukin-34 level in juvenile systemic lupus erythematosus and disease activity

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Aim of the work

To determine the role of Interleukin-34 (IL-34) in the pathogenesis of juvenile systemic lupus erythematosus (J-SLE), by exploring the relationship between IL-34 concentration and the disease activity

Subjects and methods

This study was carried out on 48 children with SLE, and 30 healthy control subjects. SLE disease activity was measured by systemic lupus erythematosus disease activity index (SLEDAI). Serum IL-34 was measured by enzyme-linked immunosorbent assay (ELISA). The collected data were statistically analyzed using SPSS program version 16.0.

Results

There was a significant elevation in IL-34 concentration in J-SLE patients (52.25 ± 19.94 pg/ml) compared with control group (11.20 ± 6.40 pg/ml) (p < 0.001). The highest level was detected in patients with high SLEDAI score and with lupus nephritis (p = 0.005, 0.003, respectively). There was a statistically significant positive correlation between IL-34 levels and SLEDAI, ESR, CRP, and anti-ds DNA antibodies, but negative correlation with complement (C3, C4), and hemoglobin levels in J-SLE patients.

Conclusion

IL-34 could be a probable marker for J-SLE disease activity which is more aggressive than adult-SLE, and IL-34 blockage may suppress the expression of proinflammatory cytokines in patients’ blood.

Key Points

Juvenile SLE is more aggressive and of worse prognosis than adult-SLE.

Significantly elevated concentration of IL-34 in juvenile SLE patients when compared with controls.

Elevated concentrations of IL-34 in patients are correlated with SLEDAI, ESR, CRP, ds-DNA antibodies, hemoglobin, and complement levels.

IL-34 may play a role in SLE pathogenesis and disease activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rahman A, Isenberg DA (2008) Systemic lupus erythematosus. N Engl J Med 358:929–939

    Article  CAS  PubMed  Google Scholar 

  2. Ståhl-Hallengren C, Jönsen A, Nived O, Sturfelt G (2000) Incidence studies of systemic lupus erythematosus in southern Sweden: increasing age, decreasing frequency of renal manifestations and good prognosis. J Rheumatol 27:685–691

    PubMed  Google Scholar 

  3. Mahmoud ED, Ghaith D, Farag Y et al (2018) Serum ferritin level as a marker of disease activity and renal involvement in Egyptian children with juvenile systemic lupus erythematosus. Egypt Rheumatol 40(4):273–276

    Article  Google Scholar 

  4. Gheith RE, El-Gazzar II, El Fishawy HS et al (2017) Juvenile and juvenile-onset systemic lupus erythematosus patients: clinical characteristics, disease activity and damage. Egypt Rheumatol 65(2):49–53

    Google Scholar 

  5. Taddio A, Rossetto E, Rosé CD, Brescia AM, Bracaglia C, Cortis E, Rigante D, Stabile A, Montico M, Ronfani L, Ventura A, Lepore L (2010) Prognostic impact of atypical presentation in pediatric systemic lupus erythematosus: results from a multicenter study. J Pediatr 156:972–977

    Article  PubMed  Google Scholar 

  6. Xu WD, Pan HF, Ye DQ (2013) Association of interleukin-18 and systemic lupus erythematosus. Rheumatol Int 33:3055–3057

    Article  CAS  PubMed  Google Scholar 

  7. Jesus AA, Liphaus BL, Silva CA et al (2011) Complement and antibody primary immunodeficiency in juvenile systemic lupus erythematosus patients. Lupus 20:1275–1284

    Article  CAS  PubMed  Google Scholar 

  8. Tahernia L, Namazi S, Rezaei N et al (2017) Cytokines in systemic lupus erythematosus: their role in pathogenesis of disease and possible therapeutic opportunities. Rheumatol Res J 2(1):1–9

    Article  Google Scholar 

  9. Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, Hollenbaugh D, Linnemann T, Qin M, Wong J, Chu K, Doberstein SK, Williams LT (2008) Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320(5877):807–811

    Article  CAS  PubMed  Google Scholar 

  10. El-Garf K, Marzouk H, Farag Y et al (2016) Mean platelet volume is a marker of inflammation but not a marker of disease activity in children with juvenile SLE. Egypt Rheumatol 38(1):35–39

    Article  Google Scholar 

  11. Eda H, Zhang J, Keith R, Michener M, Beidler DR, Monahan JB (2010) Macrophage-colony stimulating factor and interleukin-34 induce chemokines in human whole blood. Cytokine 52(3):215–220

    Article  CAS  PubMed  Google Scholar 

  12. Cash H, Relle M, Menke J, Brochhausen C, Jones SA, Topley N, Galle PR, Schwarting A (2010) Interleukin 6 (IL-6) deficiency delays lupus nephritis in MRL-Faslpr mice: the IL-6 pathway as a new therapeutic target in treatment of autoimmune kidney disease in systemic lupus erythematosus. The J rheumatol 37(1):60–70

    Article  CAS  PubMed  Google Scholar 

  13. El-Gohary A, Hegazy A, Abbas M et al (2016) Serum and urinary interferon-gamma-inducible protein 10 in lupus nephritis. J Clin Lab Anal 30(6):1135–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim HL, Lee DS, Yang SH, Lim CS, Chung JH, Kim S, Lee JS, Kim YS (2002) The polymorphism of monocyte chemoattractant protein-1 is associated with the renal disease of SLE. Am J Kidney Dis 40(6):1146–1152

    Article  CAS  PubMed  Google Scholar 

  15. Moon SJ, Hong YS, Ju JH, Kwok SK, Park SH, Min JK (2013) Increased levels of interleukin 34 in serum and synovial fluid are associated with rheumatoid factor and anticyclic citrullinated peptide antibody titers in patients with rheumatoid arthritis. J Rheumatol 40:1842–1849

    Article  CAS  PubMed  Google Scholar 

  16. Petri M, Orbai AM, Alarcon GS et al (2012) Derivation and validation of systemic lupus international collaboration clinic classification criteria for systemic lupus erythematosus. Arthritis Rheum 64(8):2677–2686

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gladman DD, Ibanez D, Urowitz MB (2002) Systemic lupus erythematosus disease activity index 2000. J Rheumatol 29(2):288–291

    PubMed  Google Scholar 

  18. Levesque R (2007) SPSS programming and data management: a guide for SPSS and SAS users, 4th edn. SPSS Inc., Chicago

    Google Scholar 

  19. Gheita TA, Fawzy SM, Nour El-din AM et al (2011) Juvenile and adult onset systemic lupus erythematosus outcome in Egyptian patients. Egypt Rheumatol 33(2):99–105

    Article  Google Scholar 

  20. El-Gawish MH, Sharaf DM, Abdel-Fattah NR et al (2019) Evaluation of serum Interleukin-34, as a marker of disease activity in systemic lupus erythematosus and rheumatoid arthritis patients, Egypt. ZUMJ 25(3):285–290

    Google Scholar 

  21. Xie H, Shen H, Zhang L et al (2018) Elevated serum Interleukin-34 level in patients with systemic lupus erythematosus is associated with disease activity. Sci Rep 8(1):3462

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang H, Cao J, Lai X (2016) Serum interleukin-34 levels are elevated in patients with systemic lupus erythematosus. Molecules 22(1):35

    Article  PubMed Central  Google Scholar 

  23. Bethunaickan R, Berthier CC, Zhang W, Davidson A et al (2013) Comparative transcriptional profiling of 3 murine models of SLE nephritis reveals both unique and shared regulatory networks. PloS one 8(10):e77489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Farrag DA, Asaad MK, Ghobrial CK (2017) Evaluation of IL-34 in psoriasis and psoriatic arthritis patients: correlation with disease activity and severity. Egypt Rheumatol 39(1):25–31

    Article  Google Scholar 

  25. Wang B, Ma Z, Wang M, et al (2017) IL-34 upregulated Th17 production through increased IL-6 expression by rheumatoid fibroblast-like synoviocytes. Mediators of inflammation, 2017

  26. Chang SH, Choi BY, Choi J et al (2015) Baseline serum interleukin-34 levels independently predict radiographic progression in patients with rheumatoid arthritis. Rheumatol Int 35(1):71–79

    Article  CAS  PubMed  Google Scholar 

  27. Rojas M, Rodríguez Y, Leon KJ et al (2018) Cytokines and inflammatory mediators in systemic lupus erythematosus. EMJ Rheumatol 5(1):83–92

    Google Scholar 

  28. Cavalcanti A, Santos R, Mesquita Z, Duarte AL, Lucena-Silva N (2017) Cytokine profile in childhood-onset systemic lupus erythematosus: a cross-sectional and longitudinal study. Braz J Med Biol Res 50(4):e5738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radwa Mostafa El Khouly.

Ethics declarations

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Banna, H.S., El Khouly, R.M. & Gado, S.E. Elevated serum interleukin-34 level in juvenile systemic lupus erythematosus and disease activity. Clin Rheumatol 39, 1627–1632 (2020). https://doi.org/10.1007/s10067-019-04899-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-019-04899-2

Keywords

Navigation