Skip to main content

Advertisement

Log in

Methotrexate preferentially affects Tc1 and Tc17 subset of CD8 T lymphocytes

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis is considered a T-lymphocyte-mediated disease. However, studies have focussed on CD4 T-lymphocytes, ignoring CD8 T-lymphocytes despite the latter being found abundantly in the synovium. Specifically, there is little data of the effect of methotrexate, the gold-standard DMARD, on various CD8 cytokine T-lymphocyte subsets and conflicting data on CD4 subsets. In this prospective study, patients with active rheumatoid arthritis, who were 18 to 65 years of age, were treated with methotrexate (up to 25 mg per week) for 24 weeks. At baseline and 24 weeks, frequencies of CD8+IFNγ+, CD8+IL17+, CD8+IL4+, corresponding CD4 subsets and plasma levels of IFNγ, IL-12, IL-10, IL-4 and IL-17 were determined by flow cytometry. These are summarised as median (IQR = interquartile range, 25th–75th percentile) and paired data compared using Wilcoxon signed rank test. This study included 67 patients (F/M = 4:1) with rheumatoid arthritis, 57 (85%) being RF positive and 20 receiving prednisolone at baseline. Mean (± SD) dose of methotrexate at 24 weeks was 22.9 ± 3.0 mg per week. On treatment with methotrexate, there was a significant (p = 0.04) decline in CD8+IFNγ+ cells from 37.2 (IQR 19.4–60.2) to 22.7% (IQR 8.5–49.7) and a marginal increase in CD8+IL17+ cells from 0.3 (IQR 0.1–0.6) to 0.4 (IQR 0.2–1.2), p = 0.006. There was no significant change in the other subsets. There was also a significant decline in circulating levels of IL-12, IL-10 and IL-17 and marginal increase in IL-4. On evaluating by response, non-responders but not responders had a significant increase in CD8+IL17+ (p = 0.01). There is a significant decline of CD8+IFNγ+ T cells and marginal increase in CD8+IL17+ T cells after methotrexate. Change in Tc1 subset may be mediated through reduction in IL-12 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cope AP, Schulze-Koops H, Aringer M (2007) The central role of T cells in rheumatoid arthritis. Clin Exp Rheumatol 25(5 Suppl 46):S4–11

    CAS  PubMed  Google Scholar 

  2. McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365(23):2205–2219. https://doi.org/10.1056/NEJMra1004965

    Article  CAS  PubMed  Google Scholar 

  3. Smolen JS, Tohidast-Akrad M, Gal A, Kunaver M, Eberl G, Zenz P, Falus A, Steiner G (1996) The role of T-lymphocytes and cytokines in rheumatoid arthritis. Scand J Rheumatol 25(1):1–4. https://doi.org/10.3109/03009749609082660

    Article  CAS  PubMed  Google Scholar 

  4. Carvalheiro H, da Silva JA, Souto-Carneiro MM (2013) Potential roles for CD8(+) T cells in rheumatoid arthritis. Autoimmun Rev 12(3):401–409. https://doi.org/10.1016/j.autrev.2012.07.011

    Article  CAS  PubMed  Google Scholar 

  5. Petrelli A, van Wijk F (2016) CD8(+) T cells in human autoimmune arthritis: the unusual suspects. Nat Rev Rheumatol 12(7):421–428. https://doi.org/10.1038/nrrheum.2016.74

    Article  CAS  PubMed  Google Scholar 

  6. Yen HR, Harris TJ, Wada S, Grosso JF, Getnet D, Goldberg MV, Liang KL, Bruno TC, Pyle KJ, Chan SL, Anders RA, Trimble CL, Adler AJ, Lin TY, Pardoll DM, Huang CT, Drake CG (2009) Tc17 CD8 T cells: functional plasticity and subset diversity. J Immunol 183(11):7161–7168. https://doi.org/10.4049/jimmunol.0900368

    Article  CAS  PubMed  Google Scholar 

  7. Mittrucker HW, Visekruna A, Huber M (2014) Heterogeneity in the differentiation and function of CD8(+) T cells. Arch Immunol Ther Exp 62(6):449–458. https://doi.org/10.1007/s00005-014-0293-y

    Article  CAS  Google Scholar 

  8. Carvalheiro H, Duarte C, Silva-Cardoso S, da Silva JA, Souto-Carneiro MM (2015) CD8+ T cell profiles in patients with rheumatoid arthritis and their relationship to disease activity. Arthritis Rheumatol 67(2):363–371. https://doi.org/10.1002/art.38941

    Article  CAS  PubMed  Google Scholar 

  9. Black RL, O’Brien WM, Vanscott EJ, Auerbach R, Eisen AZ, Bunim JJ (1964) Methotrexate therapy in psoriatic arthritis; double-blind study on 21 patients. JAMA 189:743–747

    Article  CAS  PubMed  Google Scholar 

  10. Weinblatt ME (2013) Methotrexate in rheumatoid arthritis: a quarter century of development. Trans Am Clin Climatol Assoc 124:16–25

    PubMed  PubMed Central  Google Scholar 

  11. Weinblatt ME, Coblyn JS, Fox DA, Fraser PA, Holdsworth DE, Glass DN, Trentham DE (1985) Efficacy of low-dose methotrexate in rheumatoid arthritis. N Engl J Med 312(13):818–822. https://doi.org/10.1056/NEJM198503283121303

    Article  CAS  PubMed  Google Scholar 

  12. Cronstein BN (2005) Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev 57(2):163–172. https://doi.org/10.1124/pr.57.2.3

    Article  CAS  PubMed  Google Scholar 

  13. Chan ES, Cronstein BN (2010) Methotrexate—how does it really work? Nat Rev Rheumatol 6(3):175–178. https://doi.org/10.1038/nrrheum.2010.5

    Article  CAS  PubMed  Google Scholar 

  14. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31(3):315–324. https://doi.org/10.1002/art.1780310302

    Article  CAS  PubMed  Google Scholar 

  15. Fransen J, van Riel PL (2005) The disease activity score and the EULAR response criteria. Clin Exp Rheumatol 23(5 Suppl 39):S93–S99

    CAS  PubMed  Google Scholar 

  16. Fransen J, van Riel PL (2009) The disease activity score and the EULAR response criteria. Rheum Dis Clin N Am 35(4):745–757, vii-viii. https://doi.org/10.1016/j.rdc.2009.10.001

    Article  Google Scholar 

  17. Maino VC, Picker LJ (1998) Identification of functional subsets by flow cytometry: intracellular detection of cytokine expression. Cytometry 34(5):207–215. https://doi.org/10.1002/(SICI)1097-0320(19981015)34:5<207::AID-CYTO1>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  18. Gravano DM, Hoyer KK (2013) Promotion and prevention of autoimmune disease by CD8+ T cells. J Autoimmun 45:68–79. https://doi.org/10.1016/j.jaut.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  19. Steiner G, Tohidast-Akrad M, Witzmann G, Vesely M, Studnicka-Benke A, Gal A, Kunaver M, Zenz P, Smolen JS (1999) Cytokine production by synovial T cells in rheumatoid arthritis. Rheumatology (Oxf) 38(3):202–213. https://doi.org/10.1093/rheumatology/38.3.202

    Article  CAS  Google Scholar 

  20. Masuko-Hongo K, Sekine T, Ueda S, Kobata T, Yamamoto K, Nishioka K, Kato T (1997) Long-term persistent accumulation of CD8+ T cells in synovial fluid of rheumatoid arthritis. Ann Rheum Dis 56(10):613–621. https://doi.org/10.1136/ard.56.10.613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fitzgerald JE, Ricalton NS, Meyer AC, West SG, Kaplan H, Behrendt C, Kotzin BL (1995) Analysis of clonal CD8+ T cell expansions in normal individuals and patients with rheumatoid arthritis. J Immunol 154(7):3538–3547

    CAS  PubMed  Google Scholar 

  22. Kang YM, Zhang X, Wagner UG, Yang H, Beckenbaugh RD, Kurtin PJ, Goronzy JJ, Weyand CM (2002) CD8 T cells are required for the formation of ectopic germinal centers in rheumatoid synovitis. J Exp Med 195(10):1325–1336. https://doi.org/10.1084/jem.20011565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tada Y, Ho A, Koh DR, Mak TW (1996) Collagen-induced arthritis in CD4- or CD8-deficient mice: CD8+ T cells play a role in initiation and regulate recovery phase of collagen-induced arthritis. J Immunol 156(11):4520–4526

    CAS  PubMed  Google Scholar 

  24. Raposo BR, Rodrigues-Santos P, Carvalheiro H, Agua-Doce AM, Carvalho L, Pereira da Silva JA, Graca L, Souto-Carneiro MM (2010) Monoclonal anti-CD8 therapy induces disease amelioration in the K/BxN mouse model of spontaneous chronic polyarthritis. Arthritis Rheum 62(10):2953–2962. https://doi.org/10.1002/art.27729

    Article  CAS  PubMed  Google Scholar 

  25. Schuerwegh AJ, van Offel JF, Bridts CH, Stevens WJ, De Clerck LS (2001) Influence of longterm therapy with methotrexate and low dose corticosteroids on type 1 and type 2 cytokine production in CD4+ and CD8+ T lymphocytes of patients with rheumatoid arthritis. J Rheumatol 28(8):1793–1799

    CAS  PubMed  Google Scholar 

  26. Scarsi M, Zanotti C, Chiarini M, Imberti L, Piantoni S, Frassi M, Tincani A, Airo P (2014) Reduction of peripheral blood T cells producing IFN-gamma and IL-17 after therapy with abatacept for rheumatoid arthritis. Clin Exp Rheumatol 32(2):204–210

    CAS  PubMed  Google Scholar 

  27. Hobl EL, Mader RM, Erlacher L, Duhm B, Mustak M, Broll H, Hogger P, Kalipciyan M, Jilma B (2011) The influence of methotrexate on the gene expression of the pro-inflammatory cytokine IL-12A in the therapy of rheumatoid arthritis. Clin Exp Rheumatol 29(6):963–969

    PubMed  Google Scholar 

  28. Cox MA, Harrington LE, Zajac AJ (2011) Cytokines and the inception of CD8 T cell responses. Trends Immunol 32(4):180–186. https://doi.org/10.1016/j.it.2011.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cui W, Joshi NS, Jiang A, Kaech SM (2009) Effects of signal 3 during CD8 T cell priming: bystander production of IL-12 enhances effector T cell expansion but promotes terminal differentiation. Vaccine 27(15):2177–2187. https://doi.org/10.1016/j.vaccine.2009.01.088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Constantin A, Loubet-Lescoulie P, Lambert N, Yassine-Diab B, Abbal M, Mazieres B, de Preval C, Cantagrel A (1998) Antiinflammatory and immunoregulatory action of methotrexate in the treatment of rheumatoid arthritis: evidence of increased interleukin-4 and interleukin-10 gene expression demonstrated in vitro by competitive reverse transcriptase-polymerase chain reaction. Arthritis Rheum 41(1):48–57. https://doi.org/10.1002/1529-0131(199801)41:1<48::aid-art7>3.0.co;2-k

    Article  CAS  PubMed  Google Scholar 

  31. Liu SJ, Tsai JP, Shen CR, Sher YP, Hsieh CL, Yeh YC, Chou AH, Chang SR, Hsiao KN, Yu FW, Chen HW (2007) Induction of a distinct CD8 Tnc17 subset by transforming growth factor-beta and interleukin-6. J Leukoc Biol 82(2):354–360. https://doi.org/10.1189/jlb.0207111

    Article  CAS  PubMed  Google Scholar 

  32. Intlekofer AM, Banerjee A, Takemoto N, Gordon SM, Dejong CS, Shin H, Hunter CA, Wherry EJ, Lindsten T, Reiner SL (2008) Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin. Science 321(5887):408–411. https://doi.org/10.1126/science.1159806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berner B, Akca D, Jung T, Muller GA, Reuss-Borst MA (2000) Analysis of Th1 and Th2 cytokines expressing CD4+ and CD8+ T cells in rheumatoid arthritis by flow cytometry. J Rheumatol 27(5):1128–1135

    CAS  PubMed  Google Scholar 

  34. Herman S, Zurgil N, Langevitz P, Ehrenfeld M, Deutsch M (2008) Methotrexate selectively modulates TH1/TH2 balance in active rheumatoid arthritis patients. Clin Exp Rheumatol 26(2):317–323

    CAS  PubMed  Google Scholar 

  35. Rudwaleit M, Yin Z, Siegert S, Grolms M, Radbruch A, Braun J, Sieper J (2000) Response to methotrexate in early rheumatoid arthritis is associated with a decrease of T cell derived tumour necrosis factor alpha, increase of interleukin 10, and predicted by the initial concentration of interleukin 4. Ann Rheum Dis 59(4):311–314. https://doi.org/10.1136/ard.59.4.311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yue C, You X, Zhao L, Wang H, Tang F, Zhang F, Zhang X, He W (2010) The effects of adalimumab and methotrexate treatment on peripheral Th17 cells and IL-17/IL-6 secretion in rheumatoid arthritis patients. Rheumatol Int 30(12):1553–1557. https://doi.org/10.1007/s00296-009-1179-x

    Article  CAS  PubMed  Google Scholar 

  37. Shen H, Xia L, Lu J, Xiao W (2010) Infliximab reduces the frequency of interleukin 17-producing cells and the amounts of interleukin 17 in patients with rheumatoid arthritis. J Investig Med 58(7):905–908. https://doi.org/10.231/JIM.0b013e3181eb9895

Download references

Acknowledgements

Methotrexate used in this study was provided by Zydus Synovia (Zydus Cadila Healthcare Ltd).

Funding

This study was supported by funding from Fast Track Young Scientist Scheme under Science and Engineering Research Board, Department of Science and Technology, Government of India by vide grant number SB/YS/LS-41/2013 dated June 09, 2013. Amit Sandhu was supported by Indian Council of Medical Research by the Junior Research Fellowship scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Dhir.

Ethics declarations

Disclosures

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandhu, A., Ahmad, S., Kaur, P. et al. Methotrexate preferentially affects Tc1 and Tc17 subset of CD8 T lymphocytes. Clin Rheumatol 38, 37–44 (2019). https://doi.org/10.1007/s10067-018-4011-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-018-4011-8

Keywords

Navigation