Skip to main content
Log in

Increased polyamine biosynthesis enhances stress tolerance by preventing the accumulation of reactive oxygen species: T-DNA mutational analysis of Oryza sativa lysine decarboxylase-like protein 1

  • Research Article
  • Published:
Molecules and Cells

Abstract

A highly oxidative stress-tolerant japonica rice line was isolated by T-DNA insertion mutation followed by screening in the presence of 50 mM H2O2. The T-DNA insertion was mapped to locus Os09g0547500, the gene product of which was annotated as lysine decarboxylase-like protein (GenBank accession No. AK062595). We termed this gene OsLDC-like 1, for Oryza sativa lysine decarboxylase-like 1. The insertion site was in the second exon and resulted in a 27 amino acid N-terminal deletion. Despite this defect in OsLDC-like 1, the mutant line exhibited enhanced accumulation of the polyamines (PAs) putrescine, spermidine, and spermine under conditions of oxidative stress. The generation of reactive oxygen species (ROS) in the mutant line was assessed by qRT-PCR analysis of NADPH oxidase (RbohD and RbohF), and by DCFH-DA staining. Cellular levels of ROS in osldc-like 1 leaves were significantly lower than those in the wild-type (WT) rice after exposure to oxidative, high salt and acid stresses. Exogenouslyapplied PAs such as spermidine and spermine significantly inhibited the stress-induced accumulation of ROS and cell damage in WT leaves. Additionally, the activities of ROS-detoxifying enzymes were increased in the homozygous mutant line in the presence or absence of H2O2. Thus, mutation of OsLDC-like 1 conferred an oxidative stress-tolerant phenotype. These results suggest that increased cellular PA levels have a physiological role in preventing stress-induced ROS and ethylene accumulation and the resultant cell damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcázar, R., Marco, F., Cuevas, J.C., Patron, M., Ferrando, A., Carrasco, P., Tiburcio, A.F., Altabella, T., Chattopadhyay, M.K., Tabor, C.W., et al. (2006). Involvement of polyamines in plant response to abiotic stress. Biotechnol. Lett. 28, 1867–1876.

    Article  PubMed  Google Scholar 

  • Allan, A.C., Lapidot, M., Culver, J.N., and Fluhr, R. (2001). An early tobacco mosaic virus-induced oxidative burst in tobacco indicates extracellular perception of the virus coat protein. Plant Physiol. 126, 97–108.

    Article  PubMed  CAS  Google Scholar 

  • An, S., Park, S., Jeong, D.H., Lee, D.Y., Kang, H.G., Yu, J.H., Hur, J., Kim, S.R., Kim, Y.H., Lee, M., et al. (2003). Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol. 133, 2040–2047.

    Article  PubMed  CAS  Google Scholar 

  • Apel, K., and Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399.

    Article  PubMed  CAS  Google Scholar 

  • Apostol, I., Heinstein, P.F., and Low, P.S. (1989). Rapid stimulation of an oxidative burst during elicitation of cultured plant cells: role in defense and signal transduction. Plant Physiol. 90, 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Bagni, N., and Tassoni, A. (2001). Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20, 301–317.

    Article  PubMed  CAS  Google Scholar 

  • Bagni, N., Altamura, M.M., Biondi, S., Mengoli, P., and Torrigiani, P. (1993). Polyamines and morphogenesis in normal and transgenic plant cultures. In Morphogenesis in Plants, Molecular Approaches, K.A. Roubelakis-Angelakis and K. Tran Than Van, eds. (Plenum Press, New York, NY), 89–111.

    Google Scholar 

  • Biastoff, S., Brandt, W., and Dräger, B. (2009). Putrescine N-methyltransferase — the start for alkaloids. Phytochemistry 70, 1708–1718.

    Article  PubMed  CAS  Google Scholar 

  • Bors, W., Langebartels, C., Michel, C., and Sandermann, H.J. (1989). Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28, 1589–1595.

    Article  CAS  Google Scholar 

  • Bradford, M.M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein using the principle of proteindye protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Capell, T., Bassie, L., and Christou, P. (2004). Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc. Natl. Acad. Sci. USA 101, 9909–9914.

    Article  PubMed  CAS  Google Scholar 

  • Chaerle, L., Hagenbeek, D., De Bruyne, E., Valcke, R., Van Der Straeten, D. (2004). Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant Cell Physiol. 45, 887–896.

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay, M.K., Tabor, C.W., and Tabor, H. (2003). Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc. Natl. Acad. Sci. USA 100, 2261–226.

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay, M.K., Tabor, C.W., and Tabor, H. (2006). Polyamine deficiency leads to accumulation of reactive oxygen species in a spe2 Δ mutant of Saccharomyces cerevisiae. Yeast 23, 751–761.

    Article  PubMed  CAS  Google Scholar 

  • Dat, J.F., Pellinen, R., Beeckman, T., Van De Cotte, B., Langebartels, C., Kangasjärvi, J., Inzé, D., and Van Breusegem, F. (2003). Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J. 33, 621–632.

    Article  PubMed  CAS  Google Scholar 

  • Desikan, R., Hancock, J.T., Bright, J., Harrison, J., Weir, I., Hooley, R., and Neill, S.J. (2005). A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol. 137, 831–834.

    Article  PubMed  CAS  Google Scholar 

  • Durmus, N., and Kadioglu, A. (2005). Spermine and putrescine enhance oxidative stress tolerance in maize leaves. Acta Physiol. Plant. 27, 515–522.

    Article  CAS  Google Scholar 

  • Faust, M., and Wang, S.Y. (1993). Polyamines in horticuturally important plants. Hortic. Rev. 14, 333–356.

    Google Scholar 

  • Flores, H.E., and Galston, A.W. (1984). Osmotic stress-induced polyamine accumulation in cereal leaves. Physiological parameters of the response. Plant Physiol. 75, 102–109.

    Article  PubMed  CAS  Google Scholar 

  • Flores, H.E., Protacio, C.M., and Signs, M.W. (1989). Primary and secondary metabolism of polyamines in plants. In Primary and Secondary Metabolism of Plant Cell Cultures, K. H. Newman, W. Barz and E. Reinhard, eds. (Plenum Press, New York, NY), 329–393.

    Google Scholar 

  • Goossens, A., and Rischer, H. (2007). Implementation of functional genomics for gene discovery in alkaloid producing plants. Phytochem. Rev. 6, 35–49.

    Article  CAS  Google Scholar 

  • Groppa, M.D., and Benavides, M.P. (2008). Polyamines and abiotic stress: recent advances. Amino Acids 34, 35–45.

    Article  PubMed  CAS  Google Scholar 

  • Ha, H.C., Sirisoma, N.S., Kuppusamy, P., Zweier, J.L., Woster, P.M., and Casero, R.A.Jr. (1998). The natural polyamine spermine functions directly as a free radical scavenger. Proc. Natl. Acad. Sci. USA 95, 11140–11145.

    Article  PubMed  CAS  Google Scholar 

  • Habig, W.H., Pabst, M.J., and Jakoby, W.B. (1974). Glutathione Stransferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 25, 7130–7139.

    Google Scholar 

  • Häkkinen, S.T., Tilleman, S., Swiatek, A., De Sutter, V., Rischer, H., Vanhoutte, I., Van Onckelen, H., Hilson, P., Inze, D., Oksman-Caldentey, K., et al. (2007). Functional characterization of genes involved in pyridine alkaloid biosynthesis in tobacco. Phytochemistry 68, 2773–2785.

    Article  PubMed  Google Scholar 

  • Jeon, W.B., Allard, S.T., Bingman, C.A., Bitto, E., Han, B.W., Wesenberg, G.E., and Phillips, G.N. Jr. (2006) X-ray crystal structures of the conserved hypothetical protein from Arabidopsis thaliana gene loci At5g11950 and At5g37210. Proteins 65, 1051–1054.

    Article  PubMed  CAS  Google Scholar 

  • Joo, J.H., Wang, S.Y., Chen, J.G., Jones, A.M., and Fedoroff, N.V. (2005). Different signaling and cell death roles of geterotrimeric G protein alpha and beta subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17, 975–970.

    Google Scholar 

  • Kim, J.S., Choi, S.H., and Lee, J.K. (2006). Lysine decarboxylase expression by Vibrio vulnificus is induced by SoxR in response to superoxide stress. J. Bacteriol. 188, 8586–8592.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M.S., Kim, H.S., Kim, H.N., Kim, Y.S., Baek, K.H., Park, Y.I., Joung, H., and Jeon, J.H. (2007). Growth and tuberization of transgenic potato plants expressing sense and antisense sequences of Cu/Zn superoxide dismutase from lily chloroplast. J. Plant Biol. 50, 490–495.

    Article  CAS  Google Scholar 

  • Kim, I.S., Kim, Y.S., and Yoon, H.S. (2012). Rice ASR1 protein with reactive oxygen species scavenging and chaperone-like activities enhances acquired tolerance to abiotic stresses in Saccharomyces cerevisiae. Mol. Cells 33, 285–293.

    Article  PubMed  CAS  Google Scholar 

  • Koh, S., Lee, S.C., Kim, M.K., Koh, J.H., Lee, S., An, G., Choe, S., and Kim, S.R. (2007). T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol. Biol. 65, 453–466.

    Article  PubMed  CAS  Google Scholar 

  • Kurakawa, T., Ueda, N., Maekawa, M., Kobayashi, K., Kojima, M., Nagato, Y., Sakakibara, H., and Kyozuka, J. (2007). Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445, 652–655.

    Article  PubMed  CAS  Google Scholar 

  • Kuroha, T., Tokunaga, H., Kojima, M., Ueda, N., Ishida, T., Nagawa, S., Fukuda, H., Sugimoto, K., and Sakakibara, H. (2009). Func tional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21, 3152–3169.

    Article  PubMed  CAS  Google Scholar 

  • Kusano, T., Berberich, T., Tateda, C., and Takahashi, Y. (2008). Polyamines: essential factors for growth and survival. Planta 228, 367–381.

    Article  PubMed  CAS  Google Scholar 

  • Livia, S.S., Gábor, K., and Zoltán, S. (2002). Effect of salt stress on free amino acid and polyamine content in cereals. Acta Biol. Szeged. 46, 73–75.

    Google Scholar 

  • McCord, J.M., and Fridovich, I. (1969). Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055.

    PubMed  CAS  Google Scholar 

  • Nakano, Y., and Asada, K. (1987). Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbatedepleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 28, 131–140.

    CAS  Google Scholar 

  • Nambeesan, S., AbuQamar, S., Laluk, K., Mattoo, A.K., Mickelbart, M.V., Ferruzzi, M.G., Mengiste, T., and Handa, A.K. (2012). Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to Botrytis cinerea in tomato. Plant Physiol. 158, 1034–1045.

    Article  PubMed  CAS  Google Scholar 

  • Ohe, M., Scoccianti, V., Bagni, N., Tassoni, A., and Matsuzaki, S. (2009). Putative occurrence of lysine decarboxylase isoforms in soybean (Glycine man) seedlings. Amino Acids 36, 65–70.

    Article  PubMed  CAS  Google Scholar 

  • Ormrod, D.P., and Beckerson, D.W. (1986). Polyamines as antiozonants for tomato. HortScience 21, 1070–1071.

    CAS  Google Scholar 

  • Park, K.Y., and Lee, S.H. (1994). Effects of ethylene and auxin on polyamine levels in suspension-cultured tobacco cells. Physiol. Plant. 90, 382–390.

    Article  CAS  Google Scholar 

  • Scalet, M., Federico, R., Guido, M.C., and Manes, F. (1995). Peroxidase activity and polyamine changes in response to ozone and simulated acid rain in Aleppo pine needles. Environ. Exp. Bot. 35, 417–425.

    Article  CAS  Google Scholar 

  • Tkachenko, A., Nesterova, L., and Pshenichnov, M. (2001). The role of the natural polyamine putrescine in defense against oxidative stress in Escherichia coli. Arch Microbiol. 176, 155–157.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Luo, J.P., Wu, H.Q., and Jin, H. (2009). Conversion of protocorm-like bodies of Dendrobium huoshanense to shoots: the role of polyamines in relation to the ratio of total cytokinins and indole-3-acetic acid. J. Plant Physiol. 166, 2013–2022.

    Article  PubMed  CAS  Google Scholar 

  • Wi, S.J., and Park, K.Y. (2002). Antisense expression of carnation cDNA encoding ACC synthase or ACC oxidase enhances polyamine content and abiotic stress tolerance in transgenic tobacco plants. Mol. Cells 13, 209–220.

    PubMed  CAS  Google Scholar 

  • Wi, S.J., Kim, W.T., and Park, K.Y. (2006). Overexpression of carnation S-adenosyl-methionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep. 25, 1111–1121.

    Article  PubMed  CAS  Google Scholar 

  • Wi, S.J., Ji, N.R., and Park, K.Y. (2012). Synergistic biosynthesis of biphasic ethylene and reactive oxygen species in response to hemibiotrophic Phytophthora parasitica in tobacco plants. Plant Physiol. 159, 251–265.

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa, H., Kamada, H., Satoh, M., and Ohashi, Y. (1998). Spermine is a salicylate-independent endogenous inducer for both tobacco acidic pathogenesis-related proteins and resistance against tobacco mosaic virus infection. Plant Physiol. 118, 1213–1222.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, F.G., and Qin, P. (2004). Protective effect of exogenous polyamines on root tonoplast function against salt stress in barley seedlings. Plant Growth Regul. 42, 97–103.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ky Young Park.

About this article

Cite this article

Jang, S.J., Wi, S.J., Choi, Y.J. et al. Increased polyamine biosynthesis enhances stress tolerance by preventing the accumulation of reactive oxygen species: T-DNA mutational analysis of Oryza sativa lysine decarboxylase-like protein 1. Mol Cells 34, 251–262 (2012). https://doi.org/10.1007/s10059-012-0067-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0067-5

Keywords

Navigation