Skip to main content
Log in

Analysis of the molecular and regulatory properties of active porcine endogenous retrovirus gamma-1 long terminal repeats in kidney tissues of the NIH-Miniature pig

  • Published:
Molecules and Cells

Abstract

The pig genome contains the gamma1 family of porcine endogenous retroviruses (PERVs), which are a major obstacle to the development of successful xenotransplantation from pig to human. Long terminal repeats (LTRs) found in PERVs are known to be essential elements for the control of the transcriptional activity of single virus by different transcription factors (TFs). To identify transcribed PERV LTR elements, RT-PCR and DNA sequencing analyses were performed. Twenty-nine actively transcribed LTR elements were identified in the kidney tissues of the NIH-Miniature pig. These elements were divided into two major groups (I and II), and four minor groups (I-1, I-2, I-3, and II-1), by the presence of insertion and deletion (INDEL) sequences. Group I elements showed strong transcriptional activity compared to group II elements. Four different LTR elements (PL1, PL2, PL3, and PL4) as representative of the groups were analyzed by using a transient transfection assay. The regulation of their promoter activity was investigated by treatment with M.SssI (CpG DNA methyltransferase) and garcinol (histone acetyltransferase inhibitor). The transcriptional activity of PERV LTR elements was significantly reduced by treatment with M.SssI. These data indicate that transcribed PERV LTR elements harbor sufficient promoter activity to regulate the transcription of a single virus, and the transcriptional activity of PERV LTRs may be controlled by DNA methylation events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreoni, K.A., Brayman, K.L., Guidinger, M.K., Sommers, C.M., and Sung, R.S. (2007). Kidney and pancreas transplantation in the United States, 1996–2005. Am. J. Transplant. 7, 1359–1375.

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanyam, K., Altaf, M., Varier, R.A., Swaminathan, V., Ravindran, A., Sadhale, P.P., and Kundu, T.K. (2004). Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J. Biol. Chem. 279, 33716–33726.

    Article  CAS  PubMed  Google Scholar 

  • Blusch, J.H., Patience, C., and Martin, U. (2002). Pig endogenous retroviruses and xenotransplantation. Xenotransplantation 9, 242–251.

    Article  PubMed  Google Scholar 

  • Clark, K.J., Carlson, D.F., Foster, L.K., Kong, B.W., Foster, D.N., and Fahrenkrug, S.C. (2007). Enzymatic engineering of the porcine genome with transposons and recombinases. BMC Biotechnol. 7, 42.

    Article  PubMed  Google Scholar 

  • Coste, H., and Rodríguez, J.C. (2002). Orphan nuclear hormone receptor Rev-erbalpha regulates the human apolipoprotein CIII promoter. J. Biol. Chem. 277, 27120–27129.

    Article  CAS  PubMed  Google Scholar 

  • Czauderna, F., Fischer, N., Boller, K., Kurth, R., and Tönjes, R.R. (2000). Establishment and characterization of molecular clones of porcine endogenous retroviruses replicating on human cells. J. Virol. 74, 4028–4038.

    Article  CAS  PubMed  Google Scholar 

  • Dieckhoff, B., Karlas, A., Hofmann, A., Kues, W.A., Petersen, B., Pfeifer, A., Niemann, H., Kurth, R., and Denner, J. (2007). Inhibition of porcine endogenous retroviruses (PERVs) in primary porcine cells by RNA interference using lentiviral vectors. Arch. Virol. 152, 629–634.

    Article  CAS  PubMed  Google Scholar 

  • Dieckhoff, B., Petersen, B., Kues, W.A., Kurth, R., Niemann, H., and Denner, J. (2008). Knockdown of porcine endogenous retrovirus (PERV) expression by PERV-specific shRNA in transgenic pigs. Xenotransplantation 15, 36–45.

    Article  PubMed  Google Scholar 

  • Fang, X., Han, H., Stamatoyannopoulos, G., and Li, Q. (2004). Developmentally specific role of the CCAAT box in regulation of human gamma-globin gene expression. J. Biol. Chem. 279, 5444–5449.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, P.D. (2000). Xenotransplantation: one trotter forward, one claw back. Lancet 356, 1049–1050.

    Article  CAS  PubMed  Google Scholar 

  • Huh, J.W., Kim, D.S., Ha, H.S., Ahn, K., Chang, K.T., Cho, B.W., and Kim, H.S. (2009). Identification and molecular characterization of PERV gamma1 long terminal repeats. Mol. Cells 27, 119–123.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, K., and Kawakami, K. (1995). DNA binding through distinct domains of zinc-finger-homeodomain protein AREB6 has different effects on gene transcription. Eur. J. Biochem. 233, 73–82.

    Article  CAS  PubMed  Google Scholar 

  • Ishida, T., Hamano, A., Koiwa, T., and Watanabe, T. (2006). 5′ long terminal repeat (LTR)-selective methylation of latently infected HIV-1 provirus that is demethylated by reactivation signals. Retrovirology 3, 69.

    Article  PubMed  Google Scholar 

  • Karlas, A., Kurth, R., and Denner, J. (2004). Inhibition of porcine endogenous retroviruses by RNA interference: increasing the safety of xenotransplantation. Virology 325, 18–23.

    Article  CAS  PubMed  Google Scholar 

  • Klymiuk, N., Müller, M., Brem, G., and Aigner, B. (2002). Characterization of porcine endogenous retrovirus gamma pro-pol nucleotide sequences. J. Virol. 76, 11738–11743.

    Article  CAS  PubMed  Google Scholar 

  • Krach, U., Fischer, N., Czauderna, F., and Tönjes, R.R. (2001). Comparison of replication-competent molecular clones of porcine endogenous retrovirus class A and class B derived from pig and human cells. J. Virol. 75, 5465–5472.

    Article  CAS  PubMed  Google Scholar 

  • Lavie, L., Kitova, M., Maldener, E., Meese, E., and Mayer, J. (2005). CpG methylation directly regulates transcriptional activity of the human endogenous retrovirus family HERV-K(HML-2). J. Virol. 79, 876–883.

    Article  CAS  PubMed  Google Scholar 

  • Le Tissier, P., Stoye, J.P., Takeuchi, Y., Patience, C., and Weiss, R.A. (1997). Two sets of human-tropic pig retrovirus. Nature 389, 681–682.

    Article  PubMed  Google Scholar 

  • Lee, J.H., Webb, G.C., Allen, R.D., and Moran. C. (2002). Characterizing and mapping porcine endogenous retroviruses in Westran pigs. J. Virol. 76, 5548–5556.

    Article  CAS  PubMed  Google Scholar 

  • Magre, S., Takeuchi, Y., and Bartosch, B. (2003). Xenotransplantation and pig endogenous retroviruses. Rev. Med. Virol. 13, 311–329.

    Article  PubMed  Google Scholar 

  • Maksakova, I.A., and Mager, D.L. (2005). Transcriptional regulation of early transposon elements, an active family of mouse long terminal repeat retrotransposons. J. Virol. 79, 13865–13874.

    Article  CAS  PubMed  Google Scholar 

  • Mang, R., Maas, J., Chen, X., Goudsmit, J., and van Der Kuyl, A.C. (2001). Identification of a novel type C porcine endogenous retrovirus: evidence that copy number of endogenous retroviruses increases during host inbreeding. J. Gen. Virol. 82, 1829–1834.

    CAS  PubMed  Google Scholar 

  • Martin, U., Kiessig, V., Blusch, J.H., Haverich, A., von der Helm, K., Herden, T., and Steinhoff, G. (1998). Expression of pig endogenous retrovirus by primary porcine endothelial cells and infection of human cells. Lancet 352, 692–694.

    Article  CAS  PubMed  Google Scholar 

  • Morin, S., Pozzulo, G., Robitaille, L., Cross, J., and Nemer, M. (2005). MEF2-dependent recruitment of the HAND1 transcription factor results in synergistic activation of target promoters. J. Biol. Chem. 280, 32272–32278.

    Article  CAS  PubMed  Google Scholar 

  • Niebert, M., Rogel-Gaillard, C., Chardon, P., and Tönjes, R.R. (2002). Characterization of chromosomally assigned replicationcompetent gamma porcine endogenous retroviruses derived from a large white pig and expression in human cells. J. Virol. 76, 2714–2720.

    Article  CAS  PubMed  Google Scholar 

  • Oldmixon, B.A., Wood, J.C., Ericsson, T.A., Wilson, C.A., White-Scharf, M.E., Andersson, G., Greenstein, J.L., Schuurman, H.J., and Patience, C. (2002). Porcine endogenous retrovirus transmission characteristics of an inbred herd of miniature swine. J. Virol. 76, 3045–3048.

    Article  CAS  PubMed  Google Scholar 

  • Ooi, L., and Wood, I.C. (2008). Regulation of gene expression in the nervous system. Biochem. J. 414, 327–341.

    Article  CAS  PubMed  Google Scholar 

  • Patience, C., Takeuchi, Y., and Weiss, R.A. (1997). Infection of human cells by an endogenous retrovirus of pigs. Nat. Med. 3, 282–286.

    Article  CAS  PubMed  Google Scholar 

  • Patience, C., Switzer, W.M., Takeuchi, Y., Griffiths, D.J., Goward, M.E., Heneine, W., Stoye, J.P., and Weiss, R.A. (2001). Multiple groups of novel retroviral genomes in pigs and related species. J. Virol. 75, 2771–2775.

    Article  CAS  PubMed  Google Scholar 

  • Pazin, M.J., and Kadonaga, J.T. (1997). What’s up and down with histone deacetylation and transcription? Cell 89, 325–328.

    Article  CAS  PubMed  Google Scholar 

  • Phelps, C.J., Koike, C., Vaught, T.D., Boone, J., Wells, K.D., Chen, S.H., Ball, S., Specht, S.M., Polejaeva, I.A., Monahan, J.A., et al. (2003). Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299, 411–414.

    Article  CAS  PubMed  Google Scholar 

  • Platt, J.L. (2000). Xenotransplantation. New risks, new gains. Nature 27, 29–30.

    Google Scholar 

  • Raymondjean, M., Cereghini, S., and Yaniv, M. (1988). Several distinct “CCAAT” box binding proteins coexist in eukaryotic cells. Proc. Natl. Acad. Sci. USA 85, 757–761.

    Article  CAS  PubMed  Google Scholar 

  • Scheef, G., Fischer, N., Krach, U., and Tönjes, R.R. (2001). The number of a U3 repeat box acting as an enhancer in long terminal repeats of polytropic replication-competent porcine endogenous retroviruses dynamically fluctuates during serial virus passages in human cells. J. Virol. 75, 6933–6940.

    Article  CAS  PubMed  Google Scholar 

  • Sharrocks, A.D. (2001). The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol. 2, 827–837.

    Article  CAS  PubMed  Google Scholar 

  • Sprangers, B., Waer, M., and Billiau, A.D. (2008). Xenotransplantation: where are we in 2008? Kidney Int. 74, 14–21.

    Article  CAS  PubMed  Google Scholar 

  • Takefman, D.M., Spear, G.T., Saifuddin, M., and Wilson, C.A. (2002). Human CD59 incorporation into porcine endogenous retrovirus particles: implications for the use of transgenic pigs for xenotransplantation. J. Virol. 76, 1999–2002.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi, Y., Patience, C., Magre, S., Weiss, R.A., Banerjee, P.T., Le Tissier, P., and Stoye, J.P. (1998). Host range and interference studies of three classes of pig endogenous retrovirus. J. Virol. 72, 9986–9991.

    CAS  PubMed  Google Scholar 

  • Wilson, C.A., Laeeq, S., Ritzhaupt, A., Colon-Moran, W., and Yoshimura, F.K. (2003). Sequence analysis of porcine endogenous retrovirus long terminal repeats and identification of transcriptional regulatory regions. J. Virol. 77, 142–149.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heui-Soo Kim.

About this article

Cite this article

Park, SJ., Huh, JW., Kim, DS. et al. Analysis of the molecular and regulatory properties of active porcine endogenous retrovirus gamma-1 long terminal repeats in kidney tissues of the NIH-Miniature pig. Mol Cells 30, 319–325 (2010). https://doi.org/10.1007/s10059-010-0121-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-010-0121-0

Keywords

Navigation