Skip to main content
Log in

Phosphorylation dependent nucleocytoplasmic shuttling of BES1 is a key regulatory event in brassinosteroid signaling

  • Published:
Molecules and Cells

Abstract

Brassinosteroids BRs)play important roles in plant growth and development.BRs modulate the phosphorylation status of two crucial transcription factors, BRI1 EMS SUPPRESSOR1 BES1)and BRASSINAZOLE RESISTANT1 (BZR1).Here we show that BES1 functions as a nucleocytoplasmic signal transmitter, and that its subcellular localization modulates the output intensity of the BR signal.BRASSINOSTEROID INSENSITIVE2 (BIN2)and other group II GLYCOGEN SYNTHASE KINASE 3 GSK3)-like kinases phosphorylate BES1 and induce its nuclear export by regulating its binding affinity with 14-3-3 proteins.We identified twelve putative phosphorylation residues in BES1.Two of these residues, Ser 171 and Thr 175, are critical for interaction with 14-3-3 proteins.The other putative phosphorylation sites in the N-terminal region are required for the BIN2-mediated nuclear export of BES1.Mutations of these motifs result in increased nuclear accumulation of BES1 and enhanced BR responses in transgenic plants.Taken together, our results indicate that the spatial redistribution of BES1 is important for regulation of the BR signaling output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, M.Y., Zhang, L.Y., Gampala, S.S., Zhu, S.W., Song, W.Y., Chong, K., and Wang, Z.Y. (2007). Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc. Natl. Acad. Sci. USA 104, 13839–13844.

    Article  CAS  PubMed  Google Scholar 

  • Bancos, S., Szatmari, A.M., Castle, J., Kozma-Bognar, L., Shibata, K., Yokota, T., Bishop, G.J., Nagy, F., and Szekeres, M. (2006). Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis. Plant Physiol. 141, 299–309.

    Article  CAS  PubMed  Google Scholar 

  • Bogerd, H.P., Fridell, R.A., Benson, R.E., Hua, J., and Cullen, B.R. (1996). Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization-selection assay. Mol. Cell. Biol. 16, 4207–4214.

    CAS  PubMed  Google Scholar 

  • Castle, J., Szekeres, M., Jenkins, G., and Bishop, G.J. (2005). Unique and overlapping expression patterns of Arabidopsis CYP85 genes involved in brassinosteroid C-6 oxidation. Plant Mol. Biol. 57, 129–140.

    Article  CAS  PubMed  Google Scholar 

  • Choe, S., Fujioka, S., Noguchi, T., Takatsuto, S., Yoshida, S., and Feldmann, K.A. (2001). Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J. 26, 573–582.

    Article  CAS  PubMed  Google Scholar 

  • Choe, S., Schmitz, R.J., Fujioka, S., Takatsuto, S., Lee, M.O., Yoshida, S., Feldmann, K.A., and Tax, F.E. (2002). Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3beta-like kinase. Plant Physiol. 130, 1506–1515.

    Article  CAS  PubMed  Google Scholar 

  • Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.

    Article  CAS  PubMed  Google Scholar 

  • Clouse, S.D., Langford, M., and McMorris, T.C. (1996). A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 111, 671–678.

    Article  CAS  PubMed  Google Scholar 

  • Fornerod, M., Ohno, M., Yoshida, M., and Mattaj, I.W. (1997). CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90, 1051–1060.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda, M., Asano, S., Nakamura, T., Adachi, M., Yoshida, M., Yanagida, M., and Nishida, E. (1997). CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390, 308–311.

    Article  CAS  PubMed  Google Scholar 

  • Gampala, S.S., Kim, T.W., He, J.X., Tang, W., Deng, Z., Bai, M.Y., Guan, S., Lalonde, S., Sun, Y., Gendron, J.M., et al. (2007). An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev. Cell 13, 177–189.

    Article  CAS  PubMed  Google Scholar 

  • Haasen, D., koholer, C., Neuhaus, G., and Merkle, T. (1999). Nuclear export of proteins in plants: AtXPO1 is the export receptor for leucine-rich nuclear export signals in Arabidopsis thaliana. Plant J. 20, 695–705.

    Article  CAS  PubMed  Google Scholar 

  • He, Z., Wang, Z.Y., Li, J., Zhu, Q., Lamb, C., Ronald, P., and Chory, J. (2000). Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288, 2360–2363.

    Article  CAS  PubMed  Google Scholar 

  • He, J.X., Gendron, J.M., Yang, Y., Li, J., and Wang, Z.Y. (2002). The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 99, 10185–10190.

    Article  CAS  PubMed  Google Scholar 

  • He, J.X., Gendron, J.M., Sun, Y., Gampala, S.S., Gendron, N., Sun, C.Q., and Wan, Z.Y. (2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307, 1634–1638.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, I., and Sheen, J. (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413, 383–389.

    Article  CAS  PubMed  Google Scholar 

  • Jonak, C., and Hirt, H. (2002). Glycogen synthase kinase 3/SHAGGY-like kinase in plants: an emerging family with novel functions. Trends Plant Sci. 7, 457–461.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H.B., Kwon, M., Ryu, H., Fujioka, S., Takatsuto, S., Yoshida, S., An, C.S., Lee, I., Hwang, I., and Choe, S. (2006). The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol. 140, 548–557.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T.W., Guan, S., Sun, Y., Deng, Z., Tang, W., Shang, J.X., Sun, Y., Burlingame, A.L., and Wang, Z.Y. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol. 11, 1254–1260.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., and Chory, J. (1997). A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90, 929–938.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Wen, J., Lease, K.A., Doke, J.T., Tax, F.E., and Walker, J.C. (2002). BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213–222

    Article  CAS  PubMed  Google Scholar 

  • Mandava, N.B. (1988). Plant growth-promoting brassinosteriods. Annu. Rev. Plant Phisiol. Plant Mol. Biol. 39, 23–52.

    Article  CAS  Google Scholar 

  • Mora-Garcia, S., Vert, G., Yin, Y., Cano-Delgado, A., Cheong, H., and Chory, J. (2004). Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev. 18, 448–460.

    Article  CAS  PubMed  Google Scholar 

  • Nam, K.H., and Li, J. (2002). BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110, 203–212.

    Article  CAS  PubMed  Google Scholar 

  • Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Yoshida, S., Yuan, H., Feldmann, K.A., and Tax, F.E. (1999). Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol. 121, 743–752.

    Article  CAS  PubMed  Google Scholar 

  • Paul, A.L., Sehnke, P.C., and Ferl, R.J. (2005). Isoform-specific subcellular localization among 14-3-3 proteins in Arabidopsis seems to be driven by client interactions. Mol. Biol. Cell 16, 1735–1743.

    Article  CAS  PubMed  Google Scholar 

  • Ryu, H., Kim, K., Cho, H., Park, J., Choe, S., and Hwang, I. (2007). Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell 19, 2749–2762.

    Article  CAS  PubMed  Google Scholar 

  • Sekimata, K., Kimura, T., Kaneko, I., Nakano, T., Yoneyama, K., Takeuchi, Y., Yoshida, S., and Asami, T. (2001). A specific brassinosteroid biosynthesis inhibitor, Brz2001: evaluation of its effects on Arabidopsis, cress, tobacco, and rice. Planta 213, 716–721.

    Article  CAS  PubMed  Google Scholar 

  • Tang, W., Kim, T.W., Oses-Prieto, J.A., Sun, Y., Deng, Z., Zhu, S., Wang, R., Burlingame, A.L., and Wang, Z.Y. (2008). BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321, 557–560.

    Article  CAS  PubMed  Google Scholar 

  • Verdaguer, B., de Kochko, A., Beachy, R.N., and Fauquet, C. (1996). Isolation and expression in transgenic tobacco and rice plants, of the cassava vein mosaic virus (CVMV)promoter. Plant Mol. Biol. 31, 1129–1139.

    Article  CAS  PubMed  Google Scholar 

  • Vert, G., and Chory, J.(2006). Downstream nuclear events in brassinosteroid signalling. Nature 441, 96–100.

    Article  CAS  PubMed  Google Scholar 

  • Vert, G., Nemhauser, J.L., Geldner, N., Hong, F., and Chory, J. (2005). Molecular mechanisms of steroid hormone signaling in plants. Annu. Rev. Cell Dev. Biol. 21, 177–201.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., and Chory, J. (2006). Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313, 1118–1122.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z.Y., Seto, H., Fujioka, S., Yoshida, S., and Chory, J. (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410, 380–383.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z.Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., Yang, Y., Fujioka, S., Yoshida, S., Asami, T., and Chory, J. (2002). Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev. Cell, 505–513.

  • Yin, Y., Wang, Z.Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T., and Chory, J. (2002). BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109, 181–191.

    Article  CAS  PubMed  Google Scholar 

  • Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., and Chory, J. (2005). A new class of transcription factors mediates brassinosteroid-regulated ene expression in Arabidopsis. Cell 120, 249–259.

    Article  CAS  PubMed  Google Scholar 

  • Yun, H.S., Bae, Y.H., Lee, Y.J., Chang, S.C., Kim, S.K., Li, J., and Nam, K.H. (2009). Analysis of phosphorylation of the BRI1/BAK1 complex in Arabidopsis reveals amino acid residues critical for receptor formation and activation of BR signaling. Mol. Cells 27, 183–190

    Article  CAS  PubMed  Google Scholar 

  • Zhao, J., Peng, P., Schmitz, R.J., Decker, A.D., Tax, F.E., and Li, J. (2002). Two putative BIN2 substrates are nuclear components of brassinosteroid signaling. Plant Physiol. 130, 1221–1229.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ildoo Hwang.

About this article

Cite this article

Ryu, H., Cho, H., Kim, K. et al. Phosphorylation dependent nucleocytoplasmic shuttling of BES1 is a key regulatory event in brassinosteroid signaling. Mol Cells 29, 283–290 (2010). https://doi.org/10.1007/s10059-010-0035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-010-0035-x

Keywords

Navigation