Skip to main content

Advertisement

Log in

Overlap of polymicrogyria, hydrocephalus, and Joubert syndrome in a family with novel truncating mutations in ADGRG1/GPR56 and KIAA0556

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Genetic mutations associated with brain malformations can lead to a spectrum of severity and it is often difficult to determine whether there are additional pathogenic variants contributing to the phenotype. Here, we present a family affected by a severe brain malformation including bilateral polymicrogyria, hydrocephalus, patchy white matter signal changes, and cerebellar and pontine hypoplasia with elongated cerebellar peduncles leading to the molar tooth sign. While the malformation is reminiscent of bilateral frontoparietal polymicrogyria (BFPP), the phenotype is more severe than previously reported and also includes features of Joubert syndrome (JBTS). Via exome sequencing, we identified homozygous truncating mutations in both ADGRG1/GPR56 and KIAA0556, which are known to cause BFPP and mild brain-specific JBTS, respectively. This study shows how two independent mutations can interact leading to complex brain malformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Desikan RS, Barkovich AJ (2016) Malformations of cortical development. Ann Neurol 80:797–810. https://doi.org/10.1002/ana.24793

    Article  PubMed  PubMed Central  Google Scholar 

  2. Davis EE, Katsanis N (2012) The ciliopathies: a transitional model into systems biology of human genetic disease. Curr Opin Genet Dev 22:290–303. https://doi.org/10.1016/j.gde.2012.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee JE, Gleeson JG (2011) Cilia in the nervous system: linking cilia function and neurodevelopmental disorders. Curr Opin Neurol 24:98–105. https://doi.org/10.1097/WCO.0b013e3283444d05

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tory K, Lacoste T, Burglen L, Moriniere V, Boddaert N, Macher MA, Llanas B, Nivet H, Bensman A, Niaudet P, Antignac C, Salomon R, Saunier S (2007) High NPHP1 and NPHP6 mutation rate in patients with Joubert syndrome and nephronophthisis: potential epistatic effect of NPHP6 and AHI1 mutations in patients with NPHP1 mutations. J Am Soc Nephrol 18:1566–1575. https://doi.org/10.1681/ASN.2006101164

    Article  CAS  PubMed  Google Scholar 

  5. Louie CM, Caridi G, Lopes VS, Brancati F, Kispert A, Lancaster MA, Schlossman AM, Otto EA, Leitges M, Gröne HJ, Lopez I, Gudiseva HV, O'Toole JF, Vallespin E, Ayyagari R, Ayuso C, Cremers FPM, den Hollander AI, Koenekoop RK, Dallapiccola B, Ghiggeri GM, Hildebrandt F, Valente EM, Williams DS, Gleeson JG (2010) AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nat Genet 42:175–180. https://doi.org/10.1038/ng.519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Phelps IG, Dempsey JC, Grout ME, Isabella CR, Tully HM, Doherty D, Bachmann-Gagescu R (2018) Interpreting the clinical significance of combined variants in multiple recessive disease genes: systematic investigation of Joubert syndrome yields little support for oligogenicity. Genet Med 20:223–233. https://doi.org/10.1038/gim.2017.94

    Article  PubMed  Google Scholar 

  7. Piao X, Chang BS, Bodell A, Woods K, BenZeev B, Topcu M, Guerrini R, Goldberg-Stern H, Sztriha L, Dobyns WB, Barkovich AJ, Walsh CA (2005) Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes. Ann Neurol 58:680–687. https://doi.org/10.1002/ana.20616

    Article  CAS  PubMed  Google Scholar 

  8. Bahi-Buisson N, Poirier K, Boddaert N, Fallet-Bianco C, Specchio N, Bertini E, Caglayan O, Lascelles K, Elie C, Rambaud J, Baulac M, An I, Dias P, des Portes V, Moutard ML, Soufflet C, el Maleh M, Beldjord C, Villard L, Chelly J (2010) GPR56-related bilateral frontoparietal polymicrogyria: further evidence for an overlap with the cobblestone complex. Brain 133:3194–3209. https://doi.org/10.1093/brain/awq259

    Article  PubMed  Google Scholar 

  9. Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R, Dobyns WB, Qasrawi B, Winter RM, Innes AM, Voit T, Ross ME, Michaud JL, Déscarie JC, Barkovich AJ, Walsh CA (2004) G protein-coupled receptor-dependent development of human frontal cortex. Science 303:2033–2036. https://doi.org/10.1126/science.1092780

    Article  CAS  PubMed  Google Scholar 

  10. Luo R, Jeong S-J, Jin Z, Strokes N, Li S, Piao X (2011) G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci U S A 108:12925–12930. https://doi.org/10.1073/pnas.1104821108

    Article  PubMed  PubMed Central  Google Scholar 

  11. Giera S, Deng Y, Luo R, Ackerman SD, Mogha A, Monk KR, Ying Y, Jeong SJ, Makinodan M, Bialas AR, Chang BS, Stevens B, Corfas G, Piao X (2015) The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun 6:6121. https://doi.org/10.1038/ncomms7121

    Article  CAS  PubMed  Google Scholar 

  12. Li S, Jin Z, Koirala S, Bu L, Xu L, Hynes RO, Walsh CA, Corfas G, Piao X (2008) GPR56 regulates pial basement membrane integrity and cortical lamination. J Neurosci 28:5817–5826. https://doi.org/10.1523/JNEUROSCI.0853-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanders AAWM, de Vrieze E, Alazami AM, Alzahrani F, Malarkey EB, Sorusch N, Tebbe L, Kuhns S, van Dam TJP, Alhashem A, Tabarki B, Lu Q, Lambacher NJ, Kennedy JE, Bowie RV, Hetterschijt L, van Beersum S, van Reeuwijk J, Boldt K, Kremer H, Kesterson RA, Monies D, Abouelhoda M, Roepman R, Huynen MH, Ueffing M, Russell RB, Wolfrum U, Yoder BK, van Wijk E, Alkuraya FS, Blacque OE (2015) KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome. Genome Biol 16:293. https://doi.org/10.1186/s13059-015-0858-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roosing S, Rosti RO, Rosti B, de Vrieze E, Silhavy JL, van Wijk E, Wakeling E, Gleeson JG (2016) Identification of a homozygous nonsense mutation in KIAA0556 in a consanguineous family displaying Joubert syndrome. Hum Genet 135:919–921. https://doi.org/10.1007/s00439-016-1689-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595. https://doi.org/10.1093/bioinformatics/btp698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. https://doi.org/10.1101/gr.107524.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Van der Auwera GA, Carneiro MO, Hartl C, et al (2013) From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.1–11.1033. doi: https://doi.org/10.1002/0471250953.bi1110s43

  18. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. 38:e164. doi: https://doi.org/10.1093/nar/gkq603

  19. Lek M, Karczewski KJ, Minikel EV et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291. https://doi.org/10.1038/nature19057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scott EM, Halees A, Itan Y et al (2016) Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. Nat Genet 48:1071–1076. https://doi.org/10.1038/ng.3592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wood E, Rosenbaum P (2000) The gross motor function classification system for cerebral palsy: a study of reliability and stability over time. Dev Med Child Neurol 42:292–296

    Article  CAS  PubMed  Google Scholar 

  22. Rollins JD, Collins JS, Holden KR (2010) United States head circumference growth reference charts: birth to 21 years. J Pediatr 156:907–913.e2. https://doi.org/10.1016/j.jpeds.2010.01.009

    Article  PubMed  Google Scholar 

  23. Paavola KJ, Stephenson JR, Ritter SL, et al (2011) The N terminus of the adhesion G protein-coupled receptor GPR56 controls receptor signaling activity. 286:28914–28921. doi: https://doi.org/10.1074/jbc.M111.247973

  24. Salzman GS, Ackerman SD, Ding C, Koide A, Leon K, Luo R, Stoveken HM, Fernandez CG, Tall GG, Piao X, Monk KR, Koide S, Araç D (2016) Structural basis for regulation of GPR56/ADGRG1 by its alternatively spliced extracellular domains. Neuron 91:1292–1304. https://doi.org/10.1016/j.neuron.2016.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim J-E, Han JM, Park CR, Shin KJ, Ahn C, Seong JY, Hwang JI (2010) Splicing variants of the orphan G-protein-coupled receptor GPR56 regulate the activity of transcription factors associated with tumorigenesis. J Cancer Res Clin Oncol 136:47–53. https://doi.org/10.1007/s00432-009-0635-z

    Article  CAS  PubMed  Google Scholar 

  26. Liebscher I, Schön J, Petersen SC, Fischer L, Auerbach N, Demberg LM, Mogha A, Cöster M, Simon KU, Rothemund S, Monk KR, Schöneberg T (2014) A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep 9:2018–2026. https://doi.org/10.1016/j.celrep.2014.11.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stoveken HM, Hajduczok AG, Xu L, Tall GG (2015) Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc Natl Acad Sci U S A 112:6194–6199. https://doi.org/10.1073/pnas.1421785112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vandervore L, Stouffs K, Tanyalçin I, Vanderhasselt T, Roelens F, Holder-Espinasse M, Jørgensen A, Pepin MG, Petit F, Khau van Kien P, Bahi-Buisson N, Lissens W, Gheldof A, Byers PH, Jansen AC (2017) Bi-allelic variants in COL3A1 encoding the ligand to GPR56 are associated with cobblestone-like cortical malformation, white matter changes and cerebellar cysts. J Med Genet 54:432–440. https://doi.org/10.1136/jmedgenet-2016-104421

    Article  CAS  PubMed  Google Scholar 

  29. Horn D, Siebert E, Seidel U, Rost I, Mayer K, Abou Jamra R, Mitter D, Kornak U (2017) Biallelic COL3A1 mutations result in a clinical spectrum of specific structural brain anomalies and connective tissue abnormalities. Am J Med Genet 173:2534–2538. https://doi.org/10.1002/ajmg.a.38345

    Article  CAS  PubMed  Google Scholar 

  30. Jeong S-J, Li S, Luo R, Strokes N, Piao X (2012) Loss of Col3a1, the gene for Ehlers-Danlos syndrome type IV, results in neocortical dyslamination. PLoS One 7:e29767. https://doi.org/10.1371/journal.pone.0029767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ackerman SD, Garcia C, Piao X, Gutmann DH, Monk KR (2015) The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Gα12/13 and RhoA. Nat Commun 6:6122. https://doi.org/10.1038/ncomms7122

    Article  CAS  PubMed  Google Scholar 

  32. Giera S, Luo R, Ying Y, Ackerman SD, Jeong SJ, Stoveken HM, Folts CJ, Welsh CA, Tall GG, Stevens B, Monk KR, Piao X (2018) Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. Elife 7:6122. https://doi.org/10.7554/eLife.33385

    Article  Google Scholar 

  33. Van Strien ME, Baron W, Bakker ENTP et al (2011) Tissue transglutaminase activity is involved in the differentiation of oligodendrocyte precursor cells into myelin-forming oligodendrocytes during CNS remyelination. Glia 59:1622–1634. https://doi.org/10.1002/glia.21204

    Article  PubMed  Google Scholar 

  34. Santos-Silva R, Passas A, Rocha C, Figueiredo R, Mendes-Ribeiro J, Fernandes S, Biskup S, Leão M (2015) Bilateral frontoparietal polymicrogyria: a novel GPR56 mutation and an unusual phenotype. Neuropediatrics 46:134–138. https://doi.org/10.1055/s-0034-1399754

    Article  CAS  PubMed  Google Scholar 

  35. Quattrocchi CC, Zanni G, Napolitano A, Longo D, Cordelli DM, Barresi S, Randisi F, Valente EM, Verdolotti T, Genovese E, Specchio N, Vitiello G, Spiegel R, Bertini E, Bernardi B (2013) Conventional magnetic resonance imaging and diffusion tensor imaging studies in children with novel GPR56 mutations: further delineation of a cobblestone-like phenotype. Neurogenetics 14:77–83. https://doi.org/10.1007/s10048-012-0352-7

    Article  PubMed  Google Scholar 

  36. Lindstrand A, Frangakis S, Carvalho CMB, Richardson EB, McFadden KA, Willer JR, Pehlivan D, Liu P, Pediaditakis IL, Sabo A, Lewis RA, Banin E, Lupski JR, Davis EE, Katsanis N (2016) Copy-number variation contributes to the mutational load of Bardet-Biedl syndrome. Am J Hum Genet 99:318–336. https://doi.org/10.1016/j.ajhg.2015.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nardello R, Fontana A, Antona V, Beninati A, Mangano GD, Stallone MC, Mangano S (2018) A novel mutation of WDR62 gene associated with severe phenotype including infantile spasm, microcephaly, and intellectual disability. Brain Dev 40:58–64. https://doi.org/10.1016/j.braindev.2017.07.003

    Article  PubMed  Google Scholar 

  38. Vahidnezhad H, Youssefian L, Saeidian AH, Touati A, Sotoudeh S, Jazayeri A, Guy A, Lovell PA, Liu L, Kariminejad A, McGrath JA, Zeinali S, Uitto J (2018) Next generation sequencing identifies double homozygous mutations in two distinct genes (EXPH5 and COL17A1) in a patient with concomitant simplex and junctional epidermolysis bullosa. Hum Mutat 39:1349–1354. https://doi.org/10.1002/humu.23592

    Article  CAS  PubMed  Google Scholar 

  39. Wang H-H, Feng Y, Li H-B, Wu H, Mei LY, Wang XW, Jiang L, He CF (2017) Digenic mutations involving both the BSND and GJB2 genes detected in Bartter syndrome type IV. Int J Pediatr Otorhinolaryngol 92:17–20. https://doi.org/10.1016/j.ijporl.2016.10.028

    Article  PubMed  Google Scholar 

  40. Van Goethem G, Löfgren A, Dermaut B, et al (2003) Digenic progressive external ophthalmoplegia in a sporadic patient: recessive mutations in POLG and C10orf2/twinkle. Hum Mutat 22:175–176. doi: https://doi.org/10.1002/humu.10246

Download references

Acknowledgements

The authors would like to thank the family for participating in our studies. Adam Wong at the GWU high-performance computing cluster Colonial One and Dr. Annapurna Poduri at Boston Children’s Hospital for initial input on the brain imaging.

Funding

This research was funded by a March of Dimes Research Grant to M.C.M. M.A.S and was supported by the Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia, via research group project number RGP-VPP-301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chiara Manzini.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cauley, E.S., Hamed, A., Mohamed, I.N. et al. Overlap of polymicrogyria, hydrocephalus, and Joubert syndrome in a family with novel truncating mutations in ADGRG1/GPR56 and KIAA0556. Neurogenetics 20, 91–98 (2019). https://doi.org/10.1007/s10048-019-00577-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-019-00577-2

Keywords

Navigation