Skip to main content
Log in

A novel metrics to predict right heart failure after left ventricular assist device implantation

  • Original Article
  • Artificial Heart (Clinical)
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Background

Right Heart Failure (RHF) is a severe complication that can occur after left ventricular assist device (LVAD) implantation, increasing early and late mortality. Although numerous RHF predictive scores have been developed, limited data exist on the external validation of these models. We therefore aimed at comparing existent risk score models and identifying predictors of severe RHF at our center.

Methods

In this retrospective, single-center analysis, clinical, biological and functional data were collected in patients implanted with a LVAD between 2011 and 2020. Early severe RHF was defined as the use of inotropes for ≥ 14 days, nitric oxide use for ≥ 48 h or unplanned right-sided circulatory support. Risk models were evaluated for the primary outcome of RHF or RVAD implantation by means of logistic regression and receiver operating characteristic curves.

Results

Among 92 patients implanted, 24 (26%) developed early severe RHF. The EUROMACS-RHF risk score performed the best in predicting RHF (C = 0.82–95% CI: 0.68–0.90), compared with the other scores (Michigan, CRITT).

In addition, we developed a new model, based on four variables selected for the best reduced logistic model: the INTERMACS level, the number of inotropes used, the ratio of right atrial/pulmonary capillary wedge pressure and the ratio of right ventricle/left ventricle diameters by echocardiography. This model demonstrated significant discrimination of RHF (C = 0.9–95% CI: 0.76–0.96).

Conclusion

Amongst available risk scores, EUROMACS-RHF performs best to predict the occurrence of RHF after LVAD implantation. Our model’s performance compares well to the EUROMACS-RHF score, adding a more objective parameter to RV function evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ponikowski P, Voors A, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2016;37:2129–200.

    Article  PubMed  Google Scholar 

  2. Crespo-Leiro M, Metra M, Lund LH, Milicic D, Costanzo MR, et al. Advanced heart failure: a position statement of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2018;20:1505–35.

    Article  PubMed  Google Scholar 

  3. Banner NR, Bonser RS, Clark AL, Clark S, et al. UK guidelines for referral and assessment of adults for heart transplantation. Heart. 2011;97:1520–7.

    Article  PubMed  Google Scholar 

  4. Mehra M, Kobashigawa J, Starling R, Russell S, et al. Listing criteria for heart transplantation: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates—2006. J Heart Lung Transplant. 2006;25:1024–42.

    Article  PubMed  Google Scholar 

  5. Rahmel A ed. Eurotransplant International Foundation Annual Report 2013. Leiden The Netherlands: CIP-Gegevens Koninklijke Bibliotheek 2013

  6. Trivedi JR, Cheng A, Singh R, Williams ML, Slaughter MS. Survival on the heart transplant waiting list: impact of continuous flow left ventricular assist device as bridge to transplant. Ann Thorac Surg. 2014;98:830–4.

    Article  PubMed  Google Scholar 

  7. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885–96.

    Article  CAS  PubMed  Google Scholar 

  8. Teuteberg JJ, Slaughter MS, Rogers JG, McGee EC, Pagani FD, et al. The HVAD left ventricular assist device: risk factors for neurological events and risk mitigation strategies. JACC Heart Fail. 2015;3:818–28.

    Article  PubMed  Google Scholar 

  9. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, Miller MA, Baldwin JT, Young JB. Eighth annual INTERMACS report: Special focus on framing the impact of adverse events. J Heart Lung Transplant. 2017;36:1080–6.

    Article  PubMed  Google Scholar 

  10. Slaughter MS, Rogers JG, Milano CA, Russell SD, et al. HeartMate II Investigators. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:2241–51.

    Article  CAS  PubMed  Google Scholar 

  11. Pagani FD, Miller LW, Russell SD, Aaronson KD, John R, Boyle AJ, et al. HeartMate II Investigators Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54:312–21.

    Article  PubMed  Google Scholar 

  12. Loghmanpour NA, Kormos RL, Kanwar MK, Teuteberg JJ, Murali S, Antaki JF. A bayesian model to predict right ventricular failure following left ventricular assist device therapy. JACC Heart Fail. 2016;4:711–21. https://doi.org/10.1016/j.jchf.2016.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, et al. Right ventricular failure in patients with the Heartmate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139:1316–24.

    Article  PubMed  Google Scholar 

  14. Atluri P, Goldstone AB, Fairman AS, MacArthur JW, Shudo Y, Cohen JE, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96:857–63.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Baumwol J, Macdonald PS, Keogh AM, et al. Right heart failure and “failure to thrive” after left ventricular assist device: clinical predictors and outcomes. J Heart Lung Transplant. 2011;30:888–95.

    PubMed  Google Scholar 

  16. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) 2021. Appendix A: Adverse event definitions adult and pediatric patients. 2021. https://www.uab.edu/medicine/intermacs/intermacs-documents. Accessed 10 Nov 2021.

  17. Holman WL, Acharya D, Siric F, Loyaga-Rendon RY. Assessment and management of right ventricular failure in left ventricular assist device patients. Circ J. 2015;79:478–86. https://doi.org/10.1253/circj.CJ-15-0093.

    Article  PubMed  Google Scholar 

  18. Dang NC, Topkara VK, Mercando M, Kay J, Kruger KH, Aboodi MS, et al. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transplant. 2006;25:1–6.

    Article  PubMed  Google Scholar 

  19. Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant. 2015;34:1123–30.

    Article  PubMed  Google Scholar 

  20. Drakos SG, Janicki L, Horne BD, Kfoury AG, Reid BB, Clayson S, et al. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2010;105:1030–5.

    Article  PubMed  Google Scholar 

  21. Matthews J, Koelling T, Pagani D, Aaronson K. The right ventricular failure risk score: a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51:2163–72.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang Y, Simon MA, Bonde P, Harris BU, Teuteberg JJ, Kormos RL, et al. Decision tree for adjuvant right ventricular support in patients receiving a left ventricular assist device. J Heart Lung Transplant. 2012;31:140–9.

    Article  PubMed  Google Scholar 

  23. Soliman OI, et al. Derivation and validation of a novel right-sided heart failure model after implantation of continuous flow left ventricular assist devices: the EuroMACS (European Registry for Patients with Mechanical Circulatory Support) right-sided heart failure risk score. Circulation. 2018;137:891–906.

    Article  PubMed  Google Scholar 

  24. Peters A, et al. Comparative Analysis of Established Risk Scores and Novel Hemodynamic Metrics. J Card Fail. 2019;25:620–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fitzpatrick JF, Frederick JR, Hsu VM, et al. Risk score derived from preoperative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27:1286–92.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stevenson LW, Pagani FD, Young JB, Jessup M, Miller L, Kormos RL, Naftel DC, Ulisney K, Desvigne-Nickens P, Kirklin JK. INTERMACS profiles of advanced heart failure: the current picture. J Heart Lung Transplant. 2009;28:541.

    Article  Google Scholar 

  27. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16:233–70. https://doi.org/10.1093/ehjci/jev014.

    Article  PubMed  Google Scholar 

  28. Lancellotti P, Tribouilloy C, Hagendorff A, Popescu BA, Edvardsen T, Pierard LA, Badano L, Zamorano JL. Scientific Document Committee of the European Association of Cardiovascular Imaging. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2013;14:611–44. https://doi.org/10.1093/ehjci/jet105.

    Article  PubMed  Google Scholar 

  29. Swan HJ, Ganz W, Forrester J, et al. Catheterization of the heart in man with use of a flow directed balloon tipped catheter. N Engl J Med. 1970;283:447.

    Article  CAS  PubMed  Google Scholar 

  30. Kovacs G, Avian A, Pienn M, Naeije R, Olschewski H. Reading pulmonary vascular pressure tracings. How to handle the problems of zero leveling and respiratory swings. Am J Respir Crit Care Med. 2014;190:252–7.

    Article  PubMed  Google Scholar 

  31. Bellavia D, Iacovoni A, Scardulla C, et al. Prediction of right ventricular failure after ventricular assist device implant: systematic review and meta-analysis of observational studies. Eur J Heart Fail. 2017;19:926–46.

    Article  CAS  PubMed  Google Scholar 

  32. Harjola VP, Mebazaa A, et al. Contemporary management of acute right ventricular failure: a statement from the heart failure association and the working group on pulmonary circulation and right ventricular function of the european society of cardiology. Eur J Heart Fail. 2016;18:226–41.

    Article  PubMed  Google Scholar 

  33. Feldman D, Pamboukian SV, Teuteberg JJ, et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: Executive summary. J Heart Lung Transplant. 2013;32:157–87.

    Article  PubMed  Google Scholar 

  34. John R, Bolye A. Preoperative patient optimization for mechanical circulatory support. In: Kormos RL, Miller LW, editors. mechanical circulatory support. Philadelphia: Elsevier; 2011. p. 94.

    Google Scholar 

  35. Argenziano M, Choudhri AF, Moazami N. Randomized, double-blind trial of inhaled nitric oxide in LVAD recipients with pulmonary hypertension. Ann Thorac Surg. 1998;65:340–5.

    Article  CAS  PubMed  Google Scholar 

  36. Hillgaard TK, et al. Levosimendan prevents pressure-overload-induced right ventricular failure. J Cardiovasc Pharmacol. 2016;67:275–82.

    Article  CAS  PubMed  Google Scholar 

  37. Kirklin JK, Naftel DC, Kormos RL, et al. Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant. 2013;32:141–56.

    Article  PubMed  Google Scholar 

  38. Kapur NK, Esposito M, et al. Mechanical circulatory support devices for acute right ventricular failure. Circulation. 2017;136:314–26.

    Article  PubMed  Google Scholar 

  39. Fitzpatrick JR, et al. Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J Thorac Cardiovascular Surg. 2009;137:971–7.

    Article  Google Scholar 

  40. Morgan JA, et al. Is severe right ventricular failure in left ventricular assist device recipients a risk factor for unsuccessful bridging to transplant and post-transplant mortality. Ann Thorac Surg. 2004;77:859–63.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

AR had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. FV and AR designed the study, interpreted data and drafted the manuscript. FV collected and analyzed data. EE performed the statistical analysis. CS, JLV, CD, EE, FVE have made substantial contributions to the conception and design and interpretation of data, and revised the article critically for important intellectual content. All authors have provided final approval of the version to be published.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: FV, CS, JL V, CD, AR. Data curation: FV, EE. Formal analysis: EE. Investigation: FV, CS, AR. Methodology: FV, AR. Project administration: AR. Resources: CS, AR. Supervision: CS, J-LV, CD, AR. Writing-original draft: FV, AR. Writing-review and editing: CS, J-LV, CD, EE, FVE, AR.

Corresponding author

Correspondence to Federica Valente.

Ethics declarations

Conflict of interest

Dr. Valente reports no direct conflicts of interest relevant to this manuscript. Dr. Stefanidis reports no direct conflicts of interest relevant to this manuscript. Dr. Vachiéry reports no direct conflicts of interest relevant to this manuscript. Dr. Dewachter reports no direct conflicts of interest relevant to this manuscript. Dr. Engelman reports no direct conflicts of interest relevant to this manuscript. Dr. Vanden Eyden reports no direct conflicts of interest relevant to this manuscript. Dr. Roussoulières reports no direct conflicts of interest relevant to this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 41 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valente, F., Stefanidis, C., Vachiéry, JL. et al. A novel metrics to predict right heart failure after left ventricular assist device implantation. J Artif Organs 26, 24–35 (2023). https://doi.org/10.1007/s10047-022-01334-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-022-01334-3

Keywords

Navigation