Skip to main content
Log in

Chain coding representation of voxel-based objects with enclosing, edging and intersecting trees

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Thrifty methods to represent and store three dimensional objects are important. Two different methods for describing voxel-based objects (VBOs) by means of edging (ETs) and intersecting (ITs) trees are demonstrated. Each tree comes from a different kind of border of the underlying VBO, and both trees are one dimensional alternative descriptors to skeletons for VBOs representation. Vertices in the trees correspond to the vertices of the VBO enclosing surface where some surface vertices have been conveniently suppressed. These descriptors are computed using a base-five digit chain code (combined with parentheses) and has been used to illustrate three dimensional curves and enclosing trees. The descriptors are invariant under rotation and translation, and preserve the VBO shape. Using either descriptor, the description of the mirror image of a VBO is easily obtained. The proposed descriptor notation is a good tool for storing VBOs, and intersecting trees providing further storage savings. Enclosing trees (EcTs) are briefly reviewed as a preamble to introduce ETs and ITs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Cornea ND, Silver D, Min P (2007) Curve-skeleton properties, applications, and algorithms. IEEE Trans Vis Comput Graphics 13:530–548

    Article  Google Scholar 

  2. Saha PK, Borgefors G, Sanniti di Baja G (2015) A survey of skeletonization algorithms and their applications. Pattern Recognit Lett. doi:10.1016/j.patrec.2015.04.006

  3. Jin D, Iyer KS, Chen C, Hoffman EA, Saha PK (2015) A robust and efficient curve skeletonization algorithm for tree-like objects using minimum cost paths. Pattern Recognit Lett. doi:10.1016/j.patrec.2015.04.002

  4. Svensson S, Nyström I, Sanniti di Baja G (2002) Curve skeletonization of surface-like objects in 3d images guided by voxel classification. Pattern Recognit Lett 23:1419–1426

    Article  MATH  Google Scholar 

  5. Arcelli C, Sanniti di Baja G, Serino L (2011) Distance-driven skeletonization in voxel images. IEEE Trans Pattern Anal Mach Intell 33:709–720

    Article  Google Scholar 

  6. Guzmán A (1987) Canonical shape description for 3-d stick bodies, Tech. Rep. MCC Technical Report Number: ACA-254-87, Austin

  7. Bribiesca E (2000) A chain code for representing 3d curves. Pattern Recognit 33:755–765

    Article  Google Scholar 

  8. Bribiesca E (2008) A method for representing 3d tree objects using chain coding. J Vis Commun Image R 19:184–198

    Article  Google Scholar 

  9. Bribiesca E, Aguilar W (2006) A measure of shape dissimilarity for 3d curves. Int J Contemp Math Sci 1:727–751

    Article  MathSciNet  MATH  Google Scholar 

  10. Sánchez-Cruz H, Bribiesca E (2008) Study of compression efficiency for three-dimensional discrete curves. Opt Eng 47

  11. Bribiesca E, Guzmán A, Martínez LA (2012) Enclosing trees. Pattern Anal Appl 15:1–17

    Article  MathSciNet  Google Scholar 

  12. Freeman H (1974) Computer processing of line drawing images. ACM Comput Surv 6:57–97

    Article  MATH  Google Scholar 

  13. Sánchez-Cruz H, López-Valdez HH, Cuevas FJ (2014) A new relative chain code in 3D. Pattern Recognit 47:769–788

    Article  MATH  Google Scholar 

  14. Carson JP, Einstein DR, Minard KR, Fanucchi MV, Wallis CD, Corleya RA (2010) High resolution lung airway cast segmentation with proper topology suitable for computational fluid dynamic simulations. Comput Med Imaging Graph 34:572–578

    Article  Google Scholar 

  15. Palágyi K (2008) A 3d fully parallel surface-thinning algorithm. Theor Comput Sci 406:119–135

    Article  MathSciNet  MATH  Google Scholar 

  16. Duda RO, Hart P (1973) Pattern classification and scene analysis. Wiley, New York

    MATH  Google Scholar 

  17. Jackins C, Tanimoto S (1980) Octtrees and their use in representing three dimensional object. Comput Graph Imaging Process 14:249–270

    Article  Google Scholar 

  18. Martínez LA, Bribiesca E, Guzmán A (2013) Voxel-based object representation by means of edging trees. In: Jandieri G, Schaefer G, Solo AMG, Volkov V (2013) Proceedings of the 2013 international conference on image processing, computer vision, and pattern recognition (IPCV’13), vol 1. WorldComp’13, Las Vegas. CSREA Press, pp 36–41 (2013)

  19. Bondy JA, Murty USR (2008) Graph theory. Springer, Berlin

    Book  MATH  Google Scholar 

  20. Lohgmann G (1998) Volumetric image analysis. Wiley, New York

    Google Scholar 

  21. Knuth D (1997) The art of computer programming. Fundamental algorithms, vol 1, 3rd edn. Addison-Wesley (1997)

  22. Martínez LA (2015) Representation and analysis of voxelized solids by means of edging trees, PhD thesis (in Spanish). Universidad Nacional Autónoma de México, México, D.F

  23. Klette R, Rosenfeld A (2004) Digital geometry. Morgan Kaufmann, San Francisco

    MATH  Google Scholar 

  24. Sivignon I, Dupont F, Chassery J (2005) Discrete surfaces segmentation into discrete planes. Lecture Notes Comput Sci 3322:458–473

    Article  MathSciNet  MATH  Google Scholar 

  25. Buzer L (2003) A linear incremental algorithm for naive and standard digital lines and planes recognition. Graph Models 65:61–76

    Article  MATH  Google Scholar 

  26. Sivignon I, Dupont F, Chassery JM (2004) Decomposition of a three-dimensional discrete object surface into discrete plane pieces. Algorithmica 38:25–43

    Article  MathSciNet  MATH  Google Scholar 

  27. Gerard Y, Debled-Rennesson I, Zimmermann P (2005) An elementary digital plane recognition algorithm. Discrete Appl Math 151:169–183

    Article  MathSciNet  MATH  Google Scholar 

  28. Figueiredo O (1999) Advances in discrete geometry applied to the extraction of planes and surfaces from 3D volumes, PhD thesis. École Polytechnique Fédérale de Lausanne

  29. DGtal (2015) Digital geometry tools and algorithms. http://dgtal.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Martínez.

Appendix

Appendix

See Fig. 19.

Fig. 19
figure 19

Examples of edging trees. Pivoted lever, armchair 1, coffee table, armchair2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, L.A., Bribiesca, E. & Guzmán, A. Chain coding representation of voxel-based objects with enclosing, edging and intersecting trees. Pattern Anal Applic 20, 825–844 (2017). https://doi.org/10.1007/s10044-016-0540-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-016-0540-4

Keywords

Navigation