Skip to main content

Advertisement

Log in

Modelling water-table depth in a primary aquifer to identify potential wetland hydrogeomorphic settings on the northern Maputaland Coastal Plain, KwaZulu-Natal, South Africa

Modélisation de la profondeur du niveau piézométrique dans un aquifère primaire afin d’identifier les conditions potentielles hydrogéomorphologiques de zones humides dans la plaine côtière du Nord du Maputaland, KwaZulu-Natal, Afrique du Sud

Modelización de la profundidad de la capa freática en un acuífero principal para identificar potenciales configuraciones de humedales hidrogeomórficos en el norte de Maputaland Coastal Plain, KwaZulu-Natal, Sudáfrica

模拟一个主要含水层的水位深度来确定南非夸祖鲁-纳塔尔省Maputaland沿海平原北部潜在湿地水文地貌状况

Modelagem de alturas do nível do lençol freático em um aquífero primário para identificar potencialidades de áreas úmidas através de parâmetros hidrogeomórficos no norte da planície costeira de Maputaland, KwaZulu-Natal, África do Sul

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The primary aquifer on the Maputaland Coastal Plain in northern KwaZulu-Natal, South Africa, is the principal source of water for rivers, lakes and most of the wetlands in dry periods, and is recharged by these systems in wet periods. Modelling hydrologic conditions that control regional water-table depth can provide insight into the spatial patterns of wetland occurrence and of the persistence of wet conditions that control their character. This project used a groundwater model (MODFLOW) to simulate 10-year water-table fluctuations on the Maputaland Coastal Plain from January 2000 to December 2010, to contrast the conditions between wet and dry years. Remote sensing imagery was used to map “permanent” and “temporary” wetlands in dry and wet years to evaluate the effectiveness of identifying the suitable conditions for their formation using numerical modelling techniques. The results confirm that topography plays an important role on a sub-regional and local level to support wetland formation. The wetlands’ extent and distribution are directly associated with the spatial and temporal variations of the water table in relation to the topographical profile. Groundwater discharge zones in the lowland (1–50 masl) areas support more permanent wetlands with dominantly peat or high organic soil substrates, including swamp forest and most of the permanent open water areas. Most temporary wetlands associated with low-percentage clay occurrence are through-flow low-lying interdune systems characterised by regional fluctuation of the water table, while other temporary wetlands are perched or partially perched. The latter requires a more sophisticated saturated-unsaturated modelling approach.

Résumé

L’aquifère primaire de la plaine côtière Maputaland dans le nord du KwaZulu-Natal, Afrique du Sud, constitue la principale source d’eau pour les rivières, les lacs et pour la plupart des zones humides dans les périodes sèches et est rechargé par ces systèmes dans les périodes humides. La modélisation des conditions hydrologiques qui contrôlent la profondeur du niveau piézométrique au niveau régional peut donner un aperçu du modèle de l’occurrence spatiale des zones humides et de la persistance des conditions humides qui contrôlent leurs caractéristiques. Ce projet a utilisé un modèle hydrogéologique (MODFLOW) pour simuler les fluctuations piézométriques sur une période de 10 ans au niveau de la plaine côtière du Maputaland entre Janvier 2000 et Décembre 2010, afin de prendre en considération des conditions contrastées entre années humides et années sèches. Des images de télédétection ont été utilisées pour cartographier les zones humides “permanentes” and “temporaires” pour les années sèches et humides afin d’évaluer les conditions favorables pour leur formation en utilisant des techniques de modélisation numérique. Les résultats confirment que la topographie joue un rôle important au niveau sous-régional et local pour la formation de zones humides. L’extension et la répartition des zones humides sont directement associées aux variations spatiales et temporelles du niveau piézométrique en relation avec le profil topographique. Les zones de décharge des eaux souterraines dans les zones basses (1–50 m au niveau du niveau de la mer) entretiennent les zones humides les plus permanentes dominées par la tourbe ou des substrats de sols riches en matière organique, y compris les forêts de marécages ainsi que la plupart des zones permanentes d’eau libre. La plupart des zones humides temporaires associées à une présence de faible pourcentage d’argiles sont situées au sein des systèmes d’inter dunes de basse altitude, caractérisés par une fluctuation régionale du niveau piézométrique, tandis que d’autres zones humides temporaires sont perchées ou partiellement perchées. Cette dernière exige une approche de modélisation plus sophistiquée considérant les zones saturées et non saturées.

Resumen

El acuífero principal de la llanura costera de Maputaland en el norte de KwaZulu-Natal, Sudáfrica, es la principal fuente de agua para los ríos, los lagos y la mayoría de los humedales en los períodos secos y se recarga por estos sistemas en los períodos húmedos. La modelización de las condiciones hidrológicas que controlan la profundidad regional de la capa freática puede dar una idea de los patrones espaciales de la ocurrencia de humedales y de la persistencia de las condiciones húmedas que controlan su carácter. Este proyecto utilizó un modelo de aguas subterráneas (MODFLOW) para simular 10 años fluctuaciones del nivel freático en la llanura costera de Maputaland desde enero de 2000 a diciembre de 2010, con el fin de contrastar las condiciones entre años secos y húmedos. Se utilizan las imágenes de percepción remota para mapear los humedales “permanentes” y “temporarios” en años secos y húmedos para evaluar la efectividad para identificar las condiciones adecuadas para su formación mediante técnicas de modelización numérica. Los resultados confirman que la topografía juega un papel importante a nivel sub-regional y local para apoyar la formación de los humedales. La extensión y distribución de los humedales están directamente asociadas con las variaciones espaciales y temporales de la capa freática en relación al perfil topográfico. Las zonas de descarga del agua subterránea en las tierras bajas (1–50 m.s.n.m.) sostienen humedales más permanentes con dominancia de turba o substratos de suelo altamente orgánicos, incluyendo la vegetación pantanosa y muchas de las zonas permanentes de aguas abiertas. La mayoría de los humedales temporarios asociados con los bajos porcentajes de ocurrencia de arcilla son de flujo pasante en los sistemas interdunares de baja elevación, caracterizados por la fluctuación regional de la capa freática, mientras que otros humedales temporarios están colgados o parcialmente colgados. Estos últimos requieren una aproximación de modelización saturada-no saturada más sofisticada.

摘要

南非夸祖鲁-纳塔尔省北部Maputaland沿海平原的主要含水层是干旱期间河流、湖泊、和大多数湿地的主要水源,而在雨季又受到这些系统的补给。模拟控制区域水位深度的水文条件可以深入了解出现湿地的空间模式及控制湿地特性的湿地持久性。本项目利用地下水模型(MODFLOW)模拟Maputaland沿海平原2000年1月到2010年12月年间10年的水位波动情况,并比较了干旱年份和湿润年份的状况。利用遥感影像绘制干旱年份和湿润年份的“永久”和“临时”湿地,以评估采用数值模拟技术确定这些湿地形成的合适条件的有效性。结果确认,地形对于亚区域和局部水平上的湿地形成发挥着重要作用。湿地的范围和分布与地形剖面水位的时空变化相关连。低地(海拔1-50米)区域的地下水排泄区主要为泥炭或高有机质土壤基质,支撑着更为永久的湿地,包括沼泽林和大部分永久性开放水域。与低百分比粘土相关的大多数临时湿地为直流低洼山丘间系统,特点就是区域性水位波动,而其他临时湿地位于高处或部分位于高处。后者需要更加尖端的饱和-非饱和模拟方法。

Resumo

O aquífero primário na Planície Costeira de Maputaland no norte de KwaZulu-Natal, África do Sul, é a principal fonte de água para rios, lagos e para a maioria das áreas úmidas nos períodos secos, recarregada por estes sistemas nos períodos úmidos. A modelagem das condições hidrológicas que controlam a altura do lençol freático regional, pode fornecer a percepção no padrão espacial de ocorrência de áreas úmidas e da persistência da condição de umidade que controla sua característica. Este projeto usou um modelo de águas subterrâneas (MODFLOW) para simular dez anos da variação do nível do lençol freático na Planície Costeira de Maputaland, de Janeiro de 2000 até Dezembro de 2010, para contrastar as condições entre anos úmidos e secos. Imagens de sensoriamento remoto foram usadas para mapear áreas úmidas “permanentes” e “temporárias” em anos secos e úmidos pra avaliar a eficiência de identificação das condições adequadas para sua formação usando técnicas de modelagem numérica. Os resultados confirmam que a topografia desempenha um importante papel em nível sub-regional e local para suportar a formação de áreas úmidas. A extensão e distribuição das áreas úmidas são diretamente associadas com as variações temporais e espaciais do nível do lençol freático em relação ao perfil topográfico. Zonas de descarga de águas subterrâneas nas áreas de planície (1–50 m.a.n.m.) suportam áreas úmidas mais permanentes com dominância de turfa ou solos com substratos altamente orgânicos, incluindo florestas pantanosas e a maioria das áreas permanentes de mar aberto. A maior parte dos mangues temporários associados com baixa porcentagem de ocorrência de argila são sistemas de fluxo de passagem interdunas de baixa altitude, caracterizados pela flutuação regional no nível do lençol freático, enquanto outras áreas úmidas temporárias são suspensas ou parcialmente suspensas. Este último exige uma abordagem de modelagem saturada e não-saturada mais sofisticada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, Food and Agriculture Organization, Rome

  • Barker T, Maltby E (2009) Introduction: using wetland functioning. In: Maltby E, Baker T (eds) The wetlands handbook, 1st edn. Blackwell, Oxford, pp 349–356

    Google Scholar 

  • Begg C (1989) The wetlands of Natal, part 3: the location, status and function of the priority wetlands of Natal. Natal Town and Regional Planning report, vol 73, The Natal Town and Regional Planning Commission, Pietermaritzburg, South Africa

  • Benyon RG, Theiveyanathan S, Doody TM (2006) Impacts of tree plantations on groundwater in south-eastern Australia. Aust J Bot 54:181–192

  • Berthold S, Bentley LR, Hayashi M (2004) Integrated hydrogeological and geophysical study of depression‐focused groundwater recharge in the Canadian prairies. Water Resour Res 40(6):1–14

    Article  Google Scholar 

  • Botha G, Porat N (2007) Soil chronosequence development in dunes on the southeast African coastal plain, Maputaland, South Africa. Quat Int 162–163:111–132

    Article  Google Scholar 

  • Botha G, Haldorsen S, Porat N (2013) Geological history. In: Perissinotto R, Stretch DD, Taylor RH (eds) Ecology and conservation of estuarine ecosystems: Lake St Lucia as a global model. Cambridge University Press, Cambridge, UK

  • Brites C (2013) The impact on the groundwater based on the Nylazi Plantations in St Lucia. MSc Thesis, Institute of Groundwater Studies, University of the Free State, South Africa

  • Brunner P, Bauer P, Eugster M, Kinzelbach W (2004) Using remote sensing to regionalize local precipitation recharge rates obtained from the chloride method. J Hydrol 294(4):241–250

    Article  Google Scholar 

  • Brunner P, Hendricks Franssen H-J, Kgotlhang L, Bauer-Gottwein P, Kinzelbach W (2007) How can remote sensing contribute in groundwater modeling? Hydrogeol J 15(1):5–18

    Article  Google Scholar 

  • Brunner P, Li HT, Kinzelbach W, Li WP, Dong XG (2008) Extracting phreatic evaporation from remotely sensed maps of evapotranspiration. Water Resour Res 44(8):W08428

    Article  Google Scholar 

  • Calder IR (1990) Evaporation in the uplands. Wiley, New York

    Google Scholar 

  • Canadell J, Jackson RB, Ehleringer MHA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Article  Google Scholar 

  • Carabajal C, Harding DJ (2006) SRTM c_Band and ICES Sat laser altimetry elevation comparisons as a function of tree cover and relief. Photogramm Eng Remote Sens 72:287–298

    Article  Google Scholar 

  • CGIAR-CSI (Consortium for Spatial Information) (2008) SRTM 90m digital elevation data. http://srtm.csi.cgiar.org/. Accessed 13 February 2008

  • Clulow AD, Everson CS, Gush MB (2011) The long-term impact of Acacia mearnsii trees on evaporation, streamflow and groundwater resources. WRC report no. TT 505/11, Water Research Commission, Pretoria, South Africa

  • Clulow AD, Everson CS, Jarmain C, Mengistu M (2012a) Water-use of the dominant natural vegetation types of the Eastern Shores area, Maputaland. WRC report no. 1926/1/12, Water Research Commission, Pretoria, South Africa

  • Clulow AD, Everson CS, Mengistu MG, Jarmain C, Jewitt GPW, Price JS, Grundling P (2012b) Measurement and modelling of evaporation from a coastal wetland in Maputaland, South Africa. Hydrol. Earth Syst Sci 16(9):3233–3247. doi:10.5194/hessd-9-1741-2012

  • Clulow AD, Everson CS, Mengistu M, Price JS, Nickless A, Jewitt GPW (2015) Extending periodic eddy covariance latent heat fluxes through tree sapflow measurements to estimate long-term total evaporation in a peat swamp forest. Hydrol Earth Syst Sci 19(5):2513–2534

    Article  Google Scholar 

  • Colvin C, Le Maitre D, Saayman I, Hughes S (2007) Aquifer dependent ecosystems in key hydrogeological typesettings in South Africa. WRC report no. TT 301/07, Water Research Commission, Pretoria, South Africa

  • CRU (Climatic Research Unit) Global climate dataset. http://www.ipcc-data.org/obs/cru_climatologies.html. Accessed 8 January 2013

  • Dempster A, Ellis P, Wright B, Stone M, Price JS (2006) Hydrological evaluation of a southern Ontario kettle-hole peatland and its linkage to a regional aquifer. Wetlands 16(1):49–56

    Article  Google Scholar 

  • Dennis I (2014) Determining the impact of proposed SRFA development in the W70 and W32 catchments on the water resources supporting sensitive habitats (e.g. lakes, domestic water supply and the iSimangaliso World Heritage Site and RAMSAR). Interim report, Project WP10730, Centre for Water Sciences and Management, North-West University, Potchefstroom, South Africa

  • Derby NE, Knighton RE (2001) Field-scale preferential transport of water and chloride tracer by depression-focused recharge. J Environ Qual 30(1):194–199

    Article  Google Scholar 

  • DLP (Davies Lynn and Partners) (1992) Landform geomorphology and geology. In: Environmental impact assessment, eastern shores of Lake St Lucia (Kingsa/Tojan lease area): specialists report, vol 1, part 1. Coastal and Environmental Services, Grahamstown, South Africa

  • Doherty JE, Hunt RL, Tonkin MJ (2010) Approach to highly parametrized inversion: a guide to using PEST for model-parameter and predictive-uncertainty analysis. US Geol Surv Sci Invest Rep 2010-5211

  • Everson CS, Clulow AD, Becker M, Watson A, Ngubo C, Bulcock H, Mengistu M, Lorentz S, Demlie M (2014) The long term impact of Acacia mearnsii trees on evaporation, streamflow, low flows and ground water resources: phase II—understanding the controlling environmental variables and soil water processes over a full crop rotation. WRC report no. 2022/1/13, Water Research Commission, Pretoria, South Africa

  • Ewart-Smith JL, Ollis DJ, Day JA (2006) National wetland inventory: development of a wetland classification system for South Africa. WRC report no. KV 174/06, Water Research Commission, Pretoria, South Africa

  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobbrick M, Paller M (2007) The Shuttle Radar Topography Mission. Rev Geophys 45:RG2004

  • Garstang M, Kelbe BE, Emmitt GD, London W (1987) Generation of convective storms over the escarpment of northeastern South Africa. Mon Weather Rev 115(2):60–70

    Article  Google Scholar 

  • Gilvear DJ, Bradley C (2009) Hydrological dynamics II: groundwater and hydrological connectivity. In: Maltby E, Baker T (eds) The wetlands handbook, 1st edn. Blackwell, Oxford, pp 169–193

    Chapter  Google Scholar 

  • Grobler LER (2009) A phytosociological study of peat swamp forest in the Kosi Bay lake system, Maputaland, South Africa. MSc Thesis, University of Pretoria, South Africa

  • Grundling AT (2014) Remote sensing and biophysical monitoring of vegetation, terrain attributes and hydrology to map, classify and characterise wetlands of the Maputaland Coastal Plain, KwaZulu-Natal, South Africa. PhD Thesis, University of Waterloo, Waterloo, ON, Canada

  • Grundling AT, Grundling P (2010) Groundwater distribution on the Maputaland Coastal Aquifer (north-eastern KwaZulu-Natal). ARC-ISCW report no. GW/A/2010/73, Agricultural Research Council, Pretoria, South Africa

  • Grundling P, Mazus H, Baartman L (1998) Peat resources in northern KwaZulu-Natal wetlands: Maputaland. Department of Environmental Affairs and Tourism, Pretoria, South Africa

  • Grundling AT, Van den Berg EC, Price JS (2013a) Assessing the distribution of wetlands over wet and dry periods and land-use change on the Maputaland Coastal Plain, north-eastern KwaZulu-Natal, South Africa. S Afr J Geol 2(2):120–138

    Google Scholar 

  • Grundling P, Grootjans AP, Price JP, Ellery WN (2013b) Development and persistence of an African mire: how the oldest South African fen has survived in a marginal climate. Catena 2013:176–183. doi:10.1016/j.catena.2013.06.004

    Article  Google Scholar 

  • Grundling AT, Van den Berg EC, Pretorius ML (2014) Influence of regional environmental factors on the distribution, characteristics and functioning of hydrogeomorphic wetland types on the Maputaland Coastal Plain, KwaZulu-Natal, South Africa. WRC report no. 1923/1/13, Water Research Commission, Pretoria, South Africa

  • Harbaugh AW (2005) MODFLOW-2005, the U.S. Geological Survey modular ground-water model: the ground-water flow process. US Geol Surv Techniques and Methods 6-A16

  • Hendricks Franssen H-J, Brunner P, Makobo P, Kinzelbach W (2008) Equally likely inverse solutions to groundwater flow problem including pattern information from remote sensing images. Water Resour Res 44:W01419

    Article  Google Scholar 

  • Hirt C, Filmer MS, Featherstone WE (2010) Comparison and validation of recent freely available ASTER GDEM ver 1, SRTM ver 4.1 and GEODATA DEM-9S ver 3 digital elevation models over Australia. Aust J Earth Sci 57(3):337–347

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole filled seamless SRTM data V4. International Center for Tropical Agriculture, Cali, Colombia. Available from: http://srtm.csi.cigar.org

  • Jovanovik N, Garcia CL, Bugan RDH, Teich I, Garcia Rodriguez CM (2014) Validation of remotely-sensed evapotranspiration and NDWI using ground measurements at Riverlands, South Africa. Water SA 40(2):211–220

    Article  Google Scholar 

  • Kelbe BE (1984) Cumulus cloud characteristics of the Eastern Transvaal Lowveld. Water SA 10(2):81–90

    Google Scholar 

  • Kelbe BE (2009) Hydrology and water resources of the Richards Bay EMF Area. Specialist report for the development of an environmental management framework for the Richards Bay Port Expansion Area and IDZ. Prepared for Dept. Agriculture and Environmental Affairs, KZN, Pretoria, South Africa

  • Kelbe BE, Germishuyse T (2000) The interaction between coastal lakes and the surrounding aquifer. In: Sililo O (ed) Proceedings of the XXX Congress on Groundwater Past Achievements and Future Challenges, 2000, Cape Town. Balkema, Rotterdam, The Netherlands, pp 395-400

  • Kelbe BE, Germishuyse T (2001) Geohydrological studies of the Primary Coastal Aquifer in Zululand. WRC report no. K5/720/01, Water Research Commission, Pretoria, South Africa

  • Kelbe BE, Germishuyse T (2010) Surface and Groundwater Interaction with particular reference to the Maputaland Coastal Plain. WRC report no. K5/1168/10, Water Research Commission, Pretoria, South Africa

  • Kelbe B, Taylor R (2011) Analysis of the hydrological linkage between Mfolozi/Msunduzi Estuary and Lake St Lucia. In: Bate GC, Whitfield AK, Forbes AT (eds) A review of studies on the Mfolozi Estuary and associated floodplain, with emphasis on information required by management for future reconnection of the river to the St Lucia system. WRC report no. KV 255/10, Water Research Commission, Pretoria, South Africa

  • Kelbe BE, Taylor R, Haldorsen S (2013) Hydrology in ecology and conservation of estuarine ecosystems, chapter 8. In: Perissinotto R, Stretch DD, Taylor RH (eds) Ecology and conservation of estuarine ecosystems: Lake St Lucia as a global model. Cambridge University Press, Cambridge, UK

  • Kruger GP, Meyer R (1988) Abstract volume. Proc. 22nd Cong. Geol. Soc. S. Africa, Geol. Soc. SA, Johannesburg, pp 1035–1039

  • Kulasova AS, Blazkova S, Beven K, Rezacova D, Cajtham J (2014) Vegetation pattern as an indicator of saturated areas in a Czech headwater catchment. Hydrol Process 28:5297–5308

    Article  Google Scholar 

  • Le Maitre DC, Colvin C (2008) Assessment of the contribution of groundwater discharge to rivers using monthly flow statistics and flow seasonality. Water SA 34(5):549–564

    Google Scholar 

  • Lourens PJ (2013) The relationship between South African geology and geohydrology. MSc Thesis, Institute of Groundwater Studies, University of Free State, South Africa

  • Lubke RA, Avis AM, Moll JB (1996) Post-mining rehabilitation of coastal sand dunes in Zululand, South Africa. Landsc Urban Plan 34:335–345

    Article  Google Scholar 

  • Macfarlane DM, Walters D, Cowden C (2012) A wetland health assessment of KZNs priority wetlands. Report prepared for Ezemvelo KZN Wildlife, Pietermaritzburg, South Africa

  • Maud RR, Botha GA (2000) Macro-scale geomorphic evolution of southern Africa. In: Partridge TC, Maud RR (eds) The Cenozoic of Southern Africa. UK Oxford University Press, Oxford, pp 3–32

    Google Scholar 

  • Merritt ML, Konikow LF (2000) Documentation of a computer program to simulate Lake-Aquifer Interaction using the Modflow Groundwater Flow Model and the MOC3D Solute Transport model. US Geol Surv Water Resour Invest Rep 00-4167

  • Meyer R, Godfrey L (1995) Characterisation and Mapping of the Groundwater Resources, KwaZulu-Natal. Geohydrological Mapping Project, Mapping Unit 7, CSIR report no. EMAP-C-95024, Council for Scientific and Industrial Research, Pretoria, South Africa

  • Mucina L, Rutherford MC (2006) The vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, Pretoria, South Africa

  • NGI (National Geo-spatial Information) (2013) 1:50 000 Five meter contour data set. National Geo-spatial Information, Pretoria, South Africa http://www.ruraldevelopment.gov.za/ngi-home#.UXIaUnzD8dU

  • Niswonger RG, Prudic DE, Regan RS (2006) Documentation of the unsaturated-zone flow (UZF) Package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005. US Geol Surv Techniques and Methods 6-A19, 62 pp

  • NLC2000 Management Committee (2005) South African National Land-Cover 2000 Database Project. Raster Map, Pretoria. CSIR Environmentek/ARC, Pretoria, South Africa

  • Pretorius ML (2011) A vegetation classification and description of five wetland systems and their respective zones on the Maputaland Coastal Plain. MSc Thesis, University of South Africa, South Africa

  • Prudic DE, Konikow LF, Banta E (2004) A new streamflow-routing (SFR1) Package to simulate stream-aquifer interaction with Modflow-2000. US Geol Surv Open-File Rep 2004-1042

  • Rawlins BK (1991) A geohydrological assessment of the behaviour and response of the Zululand coastal plain to both environmental influences and human activity. MSc Thesis, University of Zululand, South Africa

  • Reed B (2002) MODIS Reprojection Tool (MRT). Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Centre. https://lpdaac.usgs.gov/sites/default/files/public/mrt41_usermanual_032811.pdf. Accessed 18 October 2013

  • SANBI (South African National Biodiversity Institute) (2010) National wetland inventory. South African National Biodiversity Institute - Freshwater Programme. http://bgis.sanbi.org/nwi/map.asp. Accessed 2 April 2013

  • Schenk HJ, Jackson RB (2002) Rooting depth, lateral root spread and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 99:480–494

    Article  Google Scholar 

  • Schultz C (2013) Debating how to assess hydrological model uncertainty and weaknesses. EOS Trans Am Geophys Union 94:60

    Google Scholar 

  • Scott DF, Prinsloo FW, Moses G, Mehlomakulu, Simmer ADA (2000) A re-analysis of the South African catchment afforestation experimental data. WRC report no. 810/1/00, Water Research Commission, Pretoria, South Africa

  • Taylor RH (1991) The Greater St Lucia Wetland Park. Parke-Davis, Cape Town, South Africa, 48 pp

    Google Scholar 

  • Taylor R, Kelbe B, Haldorsen S, Botha G, Wejden B, Været L, Simonsen M (2006) Groundwater-dependent ecology of the shoreline of the subtropical Lake St Lucia estuary. Environ Geol 49:586–600

    Article  Google Scholar 

  • The Engineering ToolBox (2015) Manning’s roughness coefficient. http://www.engineeringtoolbox.com/mannings-roughness-d_799.html. Accessed 12 April 2015

  • Todd DK (1980) Groundwater hydrology. Wiley, Singapore

    Google Scholar 

  • Trigg MA, Cook PG, Brunner P (2014) Groundwater fluxes in a shallow seasonal wetland pond: the effect of bathymetric uncertainty on predicted water and solute balances. J Hydrol 517:901–912

    Article  Google Scholar 

  • Været L, Kelbe B, Haldorsen S, Taylor RH (2009) A modelling study of the effects of land management and climatic variations on groundwater inflow to lake St Lucia, South Africa. Hydrogeol J 17:1949–1967

    Article  Google Scholar 

  • Van den Berg HM, Weepener HL (2009) Development of spatial modelling methodologies for semi-detailed soil mapping, primarily in support of curbing soil degradation and the zoning of high potential land. ARC-ISCW report no. GW/A/2009/01, Agricultural Research Council, Pretoria, South Africa

  • Van den Berg HM, Weepener HL, Metz M (2009) Spatial modelling for semi-detailed soil mapping in KwaZulu-Natal. ARC-ISCW report no. GW/A/2009/48, Agricultural Research Council, Pretoria, South Africa

  • Walters D, Kotze DC, Job N (2011) Mondi state of the wetlands report: a health and ecosystem services assessment of a selection of priority wetlands across Mondi landholdings. Mondi, Gauteng, South Africa

  • Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7(1):28–45

    Article  Google Scholar 

  • Winter TC, Rosenberry DO (1995) The interaction of ground water with prairie pothole wetlands in the Cottonwood Lake area, east-central North Dakota, 1979–1990. Wetlands 15(3):193–211

    Article  Google Scholar 

  • Worthington PF (1978) Groundwater conditions in the Zululand Coastal Plain around Richards Bay, CSIR report no. FIS 182, Council for Scientific and Industrial Research, Pretoria, South Africa, 209 pp

  • Wright CI, Miller WR, Cooper JAG (2000) The late Cenozoic evolution of coastal water bodies in northern KwaZulu-Natal, South Africa. Mar Geol 167:207–229

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Piet-Louis Grundling (Department of Geography and Environmental Management, University of Waterloo, Canada) who assisted in establishing the water level monitoring network and Mr. Siphiwe Mfeka and Mr. Enos Mthembu (field assistants) who helped with the monthly water level readings. The South African Water Research Commission and Agricultural Research Council - Institute for Soil, Climate and Water are thanked for financial support. The iSimangaliso Wetland Park, Ezemvelo KZN Wildlife and the Tembe Tribal Authority are also thanked for project support and logistics in the study area. The comments from anonymous reviewers are greatly appreciated, as well as the editorial assistance of Dr. Thomas Fyfield.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce E. Kelbe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelbe, B.E., Grundling, A.T. & Price, J.S. Modelling water-table depth in a primary aquifer to identify potential wetland hydrogeomorphic settings on the northern Maputaland Coastal Plain, KwaZulu-Natal, South Africa. Hydrogeol J 24, 249–265 (2016). https://doi.org/10.1007/s10040-015-1350-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1350-2

Keywords

Navigation