Skip to main content
Log in

Mass-velocity correlation in impact induced fragmentation of heterogeneous solids

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We study the impact fragmentation of disordered solids by means of a discrete element model focusing on the velocity and mass-velocity correlation of fragments. Simulations are performed with plate-like objects varying the plate thickness and the impact velocity in broad ranges. Depending on the impact velocity the breakup process has two different outcomes: at low velocities the sample gets only damaged, to achieve fragmentation, where no large residues survive, the impact velocity has to surpass a critical value. In the fragmented phase the velocity components of fragments are power law distributed with a stretched exponential cutoff, where the impact velocity and plate thickness mainly control the standard deviation of the distributions. Mass velocity correlation is only pointed out for thin plates, while it disappears for three-dimensional bulk samples. In the damage phase of thin plates the mass and velocity of fragments proved to be strongly correlated, however, in the fragmented phase correlation occurs in the vicinity of the critical velocity and it is limited to the large fragments only. The correlation function decays as a power law with different exponents for small and large fragments in good agreement with recent experimental findings. We show that the mass-velocity correlation originates from the spatial dependence of the mass and velocity of pieces inside the fragmenting body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Herrmann, H.J., Roux, S. (eds.): Statistical Models for the Fracture of Disordered Media. Random Materials and Processes. Elsevier, Amsterdam (1990)

    Google Scholar 

  2. Aström, J.A.: Statistical models of brittle fragmentation. Adv. Phys. 55, 247–278 (2006)

    Article  ADS  Google Scholar 

  3. Aström, J.A., Vallot, D., Schäfer, M., Welty, E.Z., ONeel, S., Bartholomaus, T.C., Liu, Y., Riikilä, T.I., Zwinger, T., Timonen, J., Moore, J.C.: Termini of calving glaciers as self-organized critical systems. Nat. Geosci. 7(12), 874–878 (2014)

    Article  ADS  Google Scholar 

  4. Turcotte, D.L.: Fractals and Chaos in Geology and Geophysics. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  5. Bottke, W.F., Cellino Jr., A., Paolicchi, P., Binzel, R.P.: Asteroids III. University of Arizona Press, Tucson (2002)

    Google Scholar 

  6. Kun, F., Herrmann, H.J.: A study of fragmentation processes using a discrete element method. Comput. Methods Appl. Mech. Eng. 138, 3–18 (1996)

    Article  ADS  MATH  Google Scholar 

  7. Kun, F., Herrmann, H.J.: Fragmentation of colliding discs. Int. J. Mod. Phys. C 7, 837–855 (1996)

    Article  ADS  Google Scholar 

  8. Aström, J., Holian, A., Timonen, J.: Universality in fragmentation. Phys. Rev. Lett. 84, 3061–3064 (2000)

    Article  ADS  Google Scholar 

  9. Aström, J.A., Ouchterlony, F., Linna, R.P., Timonen, J.: Universal dynamic fragmentation in D dimensions. Phys. Rev. Lett. 92, 245506 (2004)

    Article  ADS  Google Scholar 

  10. Wittel, F.K., Kun, F., Herrmann, H.J., Kröplin, B.H.: Fragmentation of shells. Phys. Rev. Lett. 93, 035504 (2004)

    Article  ADS  Google Scholar 

  11. Wittel, F.K., Kun, F., Herrmann, H.J., Kröplin, B.H.: Study on the fragmentation of shells. Int. J. Fract. 140, 243–255 (2006)

    Article  MATH  Google Scholar 

  12. Behera, B., Kun, F., McNamara, S., Herrmann, H.J.: Fragmentation of a circular disc by impact on a frictionless plate. J. Phys. Condens. Matter 17, 2439 (2005)

    Article  ADS  Google Scholar 

  13. Timár, G., Blömer, J., Kun, F., Herrmann, H.J.: New universality class for the fragmentation of plastic materials. Phys. Rev. Lett. 104, 095502 (2010)

    Article  ADS  Google Scholar 

  14. Timár, G., Kun, F., Carmona, H.A., Herrmann, H.J.: Scaling laws for impact fragmentation of spherical solids. Phys. Rev. E 86, 016113 (2012)

    Article  ADS  Google Scholar 

  15. Pál, G., Varga, I., Kun, F.: Emergence of energy dependence in the fragmentation of heterogeneous materials. Phys. Rev. E 90, 062811 (2014)

    Article  ADS  Google Scholar 

  16. Kun, F., Wittel, F.K., Herrmann, H.J., Kröplin, B.H., Maloy, K.J.: Scaling behaviour of fragment shapes. Phys. Rev. Lett. 96, 025504 (2006)

    Article  ADS  Google Scholar 

  17. Domokos, G., Kun, F., Sipos, A.A., Szabó, T.: Universality of fragment shapes. Sci Rep 5, 9147–9154 (2015)

    Article  ADS  Google Scholar 

  18. Michikami, T., Hagermann, A., Kadokawa, T., Yoshida, A., Shimada, A., Hasegawa, S., Tsuchiyama, A.: Fragment shapes in impact experiments ranging from cratering to catastrophic disruption. Icarus 264, 316–330 (2016)

    Article  ADS  Google Scholar 

  19. Blasio, F.V.: Rheology of a wet, fragmenting granular flow and the riddle of the anomalous friction of large rock avalanches. Granul. Matter 11, 179–184 (2009)

    Article  MATH  Google Scholar 

  20. Imre, B., Laue, J., Springman, S.M.: Fractal fragmentation of rocks within sturzstroms: insight derived from physical experiments within the ETH geotechnical drum centrifuge. Granul. Matter 12, 267–285 (2010)

    Article  Google Scholar 

  21. Fujiwara, A., Tsukamoto, A.: Experimental study on the velocity of fragments in collisional breakup. Icarus 44, 142–153 (1980)

    Article  ADS  Google Scholar 

  22. Nakamura, A., Suguiyama, K., Fujiwara, A.: Velocity and spin of fragments from impact disruptions: I. An experimental approach to a general law between mass and velocity. Icarus 100(1), 127–135 (1992)

    Article  ADS  Google Scholar 

  23. Onose, N., Fujiwara, A.: Massvelocity distributions of fragments in oblique impact cratering on gypsum. Meteorit. Planet. Sci. 39(2), 321–331 (2004)

    Article  ADS  Google Scholar 

  24. Kadono, T., Arakawa, M., Mitani, N.: Fragment velocity distribution in the impact disruption of thin glass plates. Phys. Rev. E 72, 045106(R) (2005)

  25. Giblin, I.: New data on the velocitymass relation in catastrophic disruption. Planet. Space Sci. 46(8), 921–928 (1998)

    Article  ADS  Google Scholar 

  26. Kun, F., Varga, I., Lennartz-Sassinek, S., Main, I.G.: Approach to failure in porous granular materials under compression. Phys. Rev. E 88, 062207 (2013)

    Article  ADS  Google Scholar 

  27. Kun, F., Varga, I., Lennartz-Sassinek, S., Main, I.G.: Rupture cascades in a discrete element model of a porous sedimentary rock. Phys. Rev. Lett. 112, 065501 (2014)

    Article  ADS  Google Scholar 

  28. Pöschel, T., Schwager, T.: Computational Granular Dynamics. Springer, Berlin (2005)

    Google Scholar 

  29. Addetta, G.A.D., Kun, F., Ramm, E., Herrmann, H.J.: In: Vermeer, P.A., et al. (eds.) Continuous and Discontinuous Modelling of Cohesive-Frictional Materials. Lecture Notes in Physics. Springer, Berlin; Heidelberg; New York (2001)

  30. D’Addetta, G.A., Kun, F., Ramm, E.: On the application of a discrete model to the fracture process of cohesive granular materials. Granaul. Matter 4, 77–90 (2002)

    Article  MATH  Google Scholar 

  31. Carmona, H.A., Wittel, F.K., Kun, F., Herrmann, H.J.: Fragmentation processes in impact of spheres. Phys. Rev. E 77, 051302 (2008)

    Article  ADS  MATH  Google Scholar 

  32. Kadono, T.: Fragment mass distribution of platelike objects. Phys. Rev. Lett. 78, 1444–1447 (1997)

    Article  ADS  Google Scholar 

  33. Kadono, T., Arakawa, M.: Crack propagation in thin glass plates caused by high velocity impact. Phys. Rev. E 65, 035107 (2002)

    Article  ADS  Google Scholar 

  34. Giblin, I., Martelli, G., Smith, P., Martino, M.D.: Simulation of hypervelocity impacts using a contact charge. Planet. Space Sci. 42(12), 1027–1030 (1994)

    Article  ADS  Google Scholar 

  35. Kun, F., Herrmann, H.J.: Transition from damage to fragmentation in collision of solids. Phys. Rev. E 59, 2623–2632 (1999)

    Article  ADS  Google Scholar 

  36. Katsuragi, H., Sugino, D., Honjo, H.: Crossover of weighted mean fragment mass scaling in two-dimensional brittle fragmentation. Phys. Rev. E 70, 065103(R) (2004)

    Article  ADS  Google Scholar 

  37. Katsuragi, H., Sugino, D., Honjo, H.: Scaling of impact fragmentation near the critical point. Phys. Rev. E 68, 046105 (2003)

    Article  ADS  Google Scholar 

  38. Katsuragi, H., Ihara, S., Honjo, H.: Explosive fragmentation of a thin ceramic tube using pulsed power. Phys. Rev. Lett. 95, 095503 (2005)

    Article  ADS  Google Scholar 

  39. Taguchi, Y.-H., Takayasu, H.: Power law velocity fluctuations due to inelastic collisions in numerically simulated vibrated bed of powder. Europhys. Lett. 30, 499–504 (1995)

    Article  ADS  Google Scholar 

  40. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)

    Article  ADS  Google Scholar 

  41. Grigelionis, B.: Student t-Distribution and Related Stochastic Processes. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of the Projects TAMOP-4.2.2.A-11/1/KONV-2012-0036 and TAMOP-4.2.4.A/2-11/1-2012-0001 National Excellence Program. We also acknowledge the support of OTKA K84157.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Kun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pál, G., Kun, F. Mass-velocity correlation in impact induced fragmentation of heterogeneous solids. Granular Matter 18, 74 (2016). https://doi.org/10.1007/s10035-016-0670-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0670-9

Keywords

Navigation