Skip to main content
Log in

The effect of liquids on radial segregation of granular mixtures in rotating drums

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The presence of liquids can significantly affect the dynamics of granular flow. This paper investigates the effect of liquids on radial segregation of granular mixture in a rotating drum using the discrete element method. The wet granular mixture, due to differences in particle size and density, segregates in a similar way to that of dry particles: lighter/larger particles move to the periphery of the bed while heavier/smaller particles stay in the centre. An index based on the variance of local concentration of one type of particles was proposed to measure the degree of segregation. While the liquid induced capillary force slows down the segregation process, its effect on the final state is more complicated: small cohesion shows no or even positive effect on segregation while high cohesion significantly reduces particle segregation. The effect can be explained by the change of flow regimes and the competing effects of mixing and segregation (un-mixing) in particle flow which are both reduced by the interparticle cohesion. A diagram is generated to describe the combined effect of particle size and density on segregation of wet particles. A theory is adopted to predict the segregation of particles under different density/size ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(d\) :

Interparticle gap, m

\(d_\mathrm{{min}}\) :

Minimum gap for capillary/viscous force, m

\(d_\mathrm{{rup}}\) :

Liquid bridge rupture distance, m

\(d_{S}\) :

Size of small particles, mm

\(d_{L}\) :

Size of large particles, mm

\(f\) :

Filling level

\(\mathbf{F}_{ij}^n\) :

Normal contact force, N

\(\mathbf{F}_{ij}^s\) :

Tangential contact force, N

\(\mathbf{F}_{ij}^{cap}\) :

Capillary force, N

\(\mathbf{F}_{ij}^{vis,n}\) :

Normal viscous force, N

\(\mathbf{F}_{ij}^{vis,s}\) :

Tangential viscous force, N

Fr:

Froude number

g :

Gravitational acceleration, \(\text{ m}/ \text{ s}^{-2}\)

\(I_{i}\) :

Moment of inertia of particle \(i\),

\(k\) :

Rate constant of segregation, \(s^{-1}\)

\(m_{i}\) :

Mass of particle \(i\), kg

\(P\) :

Segregation parameter

\(R_{i}\) :

Radius of particle \(i\), m

\(S\) :

Segregation index

\(S_{\infty }\) :

Equilibrium segregation index

\(S_{T}\) :

Predicted equilibrium segregation index

\(V_{f}\) :

Volumetric water content

\(\mathbf{v}_{i}\) :

Velocity of particle \(i\), m/s

\(v_{n}\) :

Normal relative velocity, m/s

\(v_{t}\) :

Tangential relative velocity, m/s

\(Y\) :

Elastic modulus, Pa

\(\alpha \) :

Size ratio

\(\beta \) :

Density ratio

\(\gamma \) :

Liquid surface tension, N/m

\(\gamma _{n}\) :

The normal damping coefficient, s

\(\varepsilon \) :

Bed porosity

\(\theta _{c}\) :

Contact angle, rad

\(\upmu \) :

Liquid viscosity, Pa\(\cdot \)s

\(\upmu _\mathrm{{r}}\) :

Rolling friction coefficient

\(\upmu _\mathrm{{s,pp}}\) :

Particle- particle sliding friction coefficient

\(\upmu _\mathrm{{s,pwc}}\) :

Particle-curved wall sliding friction coefficient

\(\upmu _\mathrm{{s,pwe}}\) :

Particle-end wall sliding friction coefficient

\(v\) :

Bed volume fraction

\(\xi _{n}\) :

Particle overlap, m

\(\xi _{s}\) :

Total tangential displacements, m

\(\xi _{s,max}\) :

Maximum tangential displacements, m

\(\rho _{S}\) :

Density of small particles, \(\text{ kg}/\text{ m}^{3}\)

\(\rho _{L}\) :

Density of large particles, \(\text{ kg}/\text{ m}^{3}\)

\(\varphi \) :

Liquid bridge half-filling angle, rad

\(\tilde{\sigma }\) :

Poisson’s ratio

\({\varvec{\upomega }}_{i}\) :

Angular velocity of particle \(i\), rad/s

\(\Omega \) :

Drum rotation speed

References

  1. Aranson, I.S., Tsimring, L.S.: Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78(2), 641–692 (2006)

    Article  ADS  Google Scholar 

  2. Makse, H.A., Havlin, S., King, P.R., Stanley, H.E.: Spontaneous stratification in granular mixtures. Nature 386(6623), 379–382 (1997)

    Article  ADS  Google Scholar 

  3. Pouliquen, O., Delour, J., Savage, S.B.: Fingering in granular flow. Nature 386(6627), 816–817 (1997)

    Article  ADS  Google Scholar 

  4. Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32, 55–91 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  5. Seiden, G., Thomas, P.J.: Complexity, segregation, and pattern formation in rotating-drum flows. Rev. Mod. Phys. 83(4), 1323–1365 (2011)

    Article  ADS  Google Scholar 

  6. Ristow, G.H.: Particle mass segregation in a two-dimensional rotating drum. Europhys. Lett. 28(2), 97–101 (1994)

    Article  ADS  Google Scholar 

  7. Clement, E., Rajchenbach, J., Duran, J.: Mixing of a granular material in a bidimensional rotating drum. Europhys. Lett. 30(1), 7–12 (1995)

    Article  ADS  Google Scholar 

  8. Savage, S.B., Lun, C.K.K.: Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189, 311–335 (1988)

    Article  ADS  Google Scholar 

  9. Dury, C.M., Ristow, G.H.: Competition of mixing and segregation in rotating cylinders. Phys. Fluids 11(6), 1387–1394 (1999)

    Google Scholar 

  10. Cantelaube, F., Bideau, D.: Radial segregation in a 2d drum: an experimental analysis. Europhys. Lett. 30(3), 133–138 (1995)

    Article  ADS  Google Scholar 

  11. Khakhar, D.V., McCarthy, J.J., Ottino, J.M.: Radial segregation of granular mixtures in rotating cylinders. Phys. Fluids 9(12), 3600–3614 (1997)

    Article  ADS  Google Scholar 

  12. Alonso, M., Satoh, M., Miyanami, K.: Optimum combination of size ratio, density ratio and concentration to minimize free surface segregation. Powder Technol. 68(2), 145–152 (1991)

    Article  Google Scholar 

  13. Jain, N., Ottino, J.M., Lueptow, R.M.: Regimes of segregation and mixing in combined size and density granular systems: an experimental study. Granul. Matter 7(2–3), 69–81 (2005)

    Article  Google Scholar 

  14. Thomas, N.: Reverse and intermediate segregation of large beads in dry granular media. Phys. Rev. E 62(1), 961–974 (2000)

    Article  ADS  Google Scholar 

  15. Prigozhin, L., Kalman, H.: Radial mixing and segregation of a binary mixture in a rotating drum: model and experiment. Phys. Rev. E 57(2), 2073–2080 (1998)

    Article  ADS  Google Scholar 

  16. Nityanand, N., Manley, B., Henein, H.: An analysis of radial segregation for different sized spherical solids in rotary cylinders. MTB 17(2), 247–257 (1986)

    Article  ADS  Google Scholar 

  17. Arntz, M.M.H.D., den Otter, W.K., Briels, W.J., Bussmann, P.J.T., Beeftink, H.H., Boom, R.M.: Granular mixing and segregation in a horizontal rotating drum: a simulation study on the impact of rotational speed and fill level. AIChE J. 54(12), 3133–3146 (2008)

    Google Scholar 

  18. Hill, K.M., Gioia, G., Amaravadi, D.: Radial segregation patterns in rotating granular mixtures: waviness selection. Phys. Rev. Lett. 93(22), 224301 (2004)

    Article  ADS  Google Scholar 

  19. Meier, S.W., Barreiro, D.A.M., Ottino, J.M., Lueptow, R.M.: Coarsening of granular segregation patterns in quasi-two-dimensional tumblers. Nat. Phys. 4(3), 244–248 (2008)

    Article  Google Scholar 

  20. Herminghaus, S.: Dynamics of wet granular matter. Adv. Phys. 54(3), 221–261 (2005)

    Article  ADS  Google Scholar 

  21. Tegzes, P., Vicsek, T., Schiffer, P.: Development of correlations in the dynamics of wet granular avalanches. Phys. Rev. E 67(5), 051303 (2003)

    Article  ADS  Google Scholar 

  22. Samadani, A., Kudrolli, A.: Segregation transitions in wet granular matter. Phys. Rev. Lett. 85(24), 5102–5105 (2000)

    Article  ADS  Google Scholar 

  23. Geromichalos, D., Kohonen, M.M., Mugele, F., Herminghaus, S.: Mixing and condensation in a wet granular medium. Phys. Rev. Lett. 90(16), 168702 (2003)

    Article  ADS  Google Scholar 

  24. Li, H.M., McCarthy, J.J.: Controlling cohesive particle mixing and segregation. Phys. Rev. Lett. 90(18), 184301 (2003)

    Article  ADS  Google Scholar 

  25. Thornton, C.: Coefficient of restitution for collinear collisions of elastic perfectly plastic spheres. J. Appl. Mech.-Trans. ASME 64(2), 383–386 (1997)

    Article  ADS  MATH  Google Scholar 

  26. Thornton, C., Ning, Z.M.: A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres. Powder Technol. 99(2), 154–162 (1998)

    Article  Google Scholar 

  27. Mishra, B.K., Thornton, C., Bhimji, D.: A preliminary numerical investigation of agglomeration in a rotary drum. Miner. Eng. 15(1–2), 27–33 (2002)

    Article  Google Scholar 

  28. Guo, Y., Wu, C.Y., Kafui, K.D., Thornton, C.: Numerical analysis of density-induced segregation during die filling. Powder Technol. 197(1–2), 111–119 (2010)

    Article  Google Scholar 

  29. Liu, P.Y., Yang, R.Y., Yu, A.B.: Dynamics of wet particles in rotating drums: effect of liquid surface tension. Phys. Fluids 23(1), 013304 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  30. Liu, P.Y., Yang, R.Y., Yu, A.B.: DEM study of the transverse mixing of wet particles in rotating drums. Chem. Eng. Sci. 86, 99–107 (2013)

    Article  Google Scholar 

  31. Brilliantov, N.V., Spahn, F., Hertzsch, J.M., Poschel, T.: Model for collisions in granular gases. Phys. Rev. E 53(5), 5382–5392 (1996)

    Article  ADS  Google Scholar 

  32. Langston, P.A., Tuzun, U., Heyes, D.M.: Discrete element simulation of granular flow in 2D and 3D hoppers: dependence of discharge rate and wall stress on particle interactions. Chem. Eng. Sci. 50(6), 967–987 (1995)

    Article  Google Scholar 

  33. Rabinovich, Y.I., Esayanur, M.S., Moudgil, B.M.: Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment. Langmuir 21(24), 10992–10997 (2005)

    Article  Google Scholar 

  34. Lambert, P., Chau, A., Delchambre, A., Regnier, S.: Comparison between two capillary forces models. Langmuir 24(7), 3157–3163 (2008)

    Article  Google Scholar 

  35. Pitois, O., Moucheront, P., Chateau, X.: Liquid bridge between two moving spheres: an experimental study of viscosity effects. J. Colloid Interface Sci. 231(1), 26–31 (2000)

    Google Scholar 

  36. Goldman, A.J., Cox, R.G., Brenner, H.: Slow viscous motion of a sphere parallel to a plane wall–I motion through a quiescent fluid. Chem. Eng. Sci. 22(4), 637–651 (1967)

    Article  Google Scholar 

  37. Stefaan J.R., S.: Chapter 27 Liquid bridges in granules. In: A.D. Salman, M.J.H., Seville, J.P.K. (eds.) Handbook of Powder Technology, vol. 11. pp. 1257–1316. Elsevier Science B.V., (2007)

  38. Nase, S.T., Vargas, W.L., Abatan, A.A., McCarthy, J.J.: Discrete characterization tools for cohesive granular material. Powder Technol. 116(2–3), 214–223 (2001)

    Article  Google Scholar 

  39. Anand, A., Curtis, J.S., Wassgren, C.R., Hancock, B.C., Ketterhagen, W.R.: Predicting discharge dynamics of wet cohesive particles from a rectangular hopper using the discrete element method (DEM). Chem. Eng. Sci. 64(24), 5268–5275 (2009)

    Article  Google Scholar 

  40. Lian, G.P., Thornton, C., Adams, M.J.: A theoretical study of the liquid bridge forces between 2 rigid spherical bodies. J. Colloid Interface Sci. 161(1), 138–147 (1993)

    Article  Google Scholar 

  41. Mellmann, J.: The transverse motion of solids in rotating cylinders—forms of motion and transition behavior. Powder Technol. 118(3), 251–270 (2001)

    Article  Google Scholar 

  42. Zuriguel, I., Peixinho, J., Mullin, T.: Segregation pattern competition in a thin rotating drum. Phys. Rev. E 79(5), 051303 (2009)

    Article  ADS  Google Scholar 

  43. Dury, C.M., Ristow, G.H., Moss, J.L., Nakagawa, M.: Boundary effects on the angle of repose in rotating cylinders. Phys. Rev. E 57(4), 4491–4497 (1998)

    Google Scholar 

  44. Taberlet, N., Richard, P., Hinch, E.J.: S shape of a granular pile in a rotating drum. Phys. Rev. E 73(5), 050301 (2006)

    Article  ADS  Google Scholar 

  45. Lacey, P.M.C.: Developments in the theory of particle mixing. J. Appl. Chem. 4(5), 257–268 (1954)

    Google Scholar 

  46. Zhou, Y.C., Yu, A.B., Stewart, R.L., Bridgwater, J.: Microdynamic analysis of the particle flow in a cylindrical bladed mixer. Chem. Eng. Sci. 59(6), 1343–1364 (2004)

    Article  Google Scholar 

  47. Freireich, B., Kodam, M., Wassgren, C.: An exact method for determining local solid fractions in discrete element method simulations. AIChE J. 56(12), 3036–3048 (2010)

    Google Scholar 

  48. Lumay, G., Vandewalle, N.: Flow of magnetized grains in a rotating drum. Phys. Rev. E 82(4), 040301 (2010)

    Article  ADS  Google Scholar 

  49. Dury, C.M., Ristow, G.H.: Radial segregation in a two-dimensional rotating drum. J. Phys. I 7(5), 737–745 (1997)

    Article  MathSciNet  Google Scholar 

  50. Parker, D.J., Dijkstra, A.E., Martin, T.W., Seville, J.P.K.: Positron emission particle tracking studies of spherical particle motion in rotating drums. Chem. Eng. Sci. 52(13), 2011–2022 (1997)

    Google Scholar 

  51. Hill, K.M., Gioia, G., Tota, V.V.: Structure and kinematics in dense free-surface granular flow. Phys. Rev. Lett. 91(6), 064302 (2003)

    Google Scholar 

  52. Faqih, A., Chaudhuri, B., Muzzio, F.J., Tomassone, M.S., Alexander, A., Hammond, S.: Flow-induced dilation of cohesive granular materials. AIChE J. 52(12), 4124–4132 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Australia Research Council (ARC) for the financial support for this work. In addition, this work was supported by the National Computational Infrastructure (NCI) National Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Y. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P.Y., Yang, R.Y. & Yu, A.B. The effect of liquids on radial segregation of granular mixtures in rotating drums. Granular Matter 15, 427–436 (2013). https://doi.org/10.1007/s10035-013-0392-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0392-1

Keywords

Navigation