Skip to main content
Log in

Species Diversity and Stability of Dominant Species Dominate the Stability of Community Biomass in an Alpine Meadow Under Variable Precipitation

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The stability of aboveground net primary productivity (ANPP) is critical for ecosystem functions and services, and have been studied across a wide range of ecosystems. An intriguing and challenging question emerging from these studies is how precipitation fluctuations, especially extreme precipitation, affect the temporal stability of ANPP in alpine meadow. We investigated the changes in plant community composition and aboveground biomass in an alpine meadow over six consecutive years under five precipitation treatments (increase of 50%, natural precipitation, decreases of 30%, 50% and 90%) in order to reveal the response of ANPP stability to the precipitation change, especially extreme precipitation, and the relevant driving mechanisms. The alpha diversity of plant species did not differ significantly among the treatments. ANPP was resistant to changes in precipitation between 354 and 1336 mm (precipitation interval of 50% decrease in precipitation in the driest year and 50% increase in precipitation in the wettest year during the experiment), suggesting that normal interannual fluctuations in precipitation and recent changes in regional precipitation might not significantly influence ANPP stability. However, extreme precipitation treatment (90% decrease), significantly reduced ANPP, species asynchrony and ANPP stability. A path model indicated that ANPP stability was directly affected by population stability, species asynchrony and grass stability. While the effect of species diversity on ANPP stability depends on the extents to which it positively affects species asynchrony and negatively affects population stability. In addition, the dominant species stability did not directly affect ANPP stability, while indirectly affected ANPP stability by changing the asynchrony of species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ade LJ, Zi HB, Liu M, Chen Y, Yang YF, Wang CT. 2017. Response of belowground root growth dynamics to snow cover change in alpine meadow. Acta Ecol Sin 37(20):6773–6784.

    Google Scholar 

  • Allan E, Weisser W, Weigelt A, Roscher C, Fischer M, Hillebrand H. 2011. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc Natl Acad Sci 108(41):17034–17039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Körner C, de Boeck H, Christensen JH, Leuzinger S, Janssens IA, Hansen K. 2012. Precipitation manipulation experiments - challenges and recommendations for the future. Ecol Lett 15(8):899–911.

    Article  PubMed  Google Scholar 

  • Cardinale BJ, Gross K, Fritschie K, Pedro F, Jeremy WF, Christian R, Jasper VR, Peter BR, Michael SL, Brian JW. 2013. Biodiversity simultaneously enhances the production and stability of community biomass, but the effects are independent. Ecology 94(8):1697–1707.

    Article  PubMed  Google Scholar 

  • Chai JL, Xu CL, Zhang DG, Xiao H, Pan TT, Yu XJ. 2019. Effects of simulated trampling and rainfall on soil nutrients and enzyme activity in an alpine meadow. Acta Ecol Sin 39(1):333–344.

    CAS  Google Scholar 

  • Chen H, Zhu QA, Peng CH, Wu N, Wang YF, Fang XQ, Gao YH, Zhu D, Yang G, Tian JQ, Kang XM, Piao SL, Ouyang H, Xiang WH, Luo ZB, Jiang H, Song XZ, Zhang Y, Yu GR, Zhao XQ, Gong P, Yao TD, Wu JH. 2013. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob Change Biol 19:2940–2955.

    Article  Google Scholar 

  • Craven D, Eisenhauer N, Pearse WD, Hautier Y, Isbell F, Roscher C, Bahn M, Beierkuhnlein C, Bönisch G, Buchmann N, Byun C, Catford JA, Cerabolini BEL, Cornelissen JHC, Craine JM, Luca ED, Ebeling A, Griffin JN, Hector A, Hines J, Jentsch Anke, Kattge J, Kreyling J, Lanta V, Lemoine N, Meyer ST, Minden V, Onipchenko V, Polley HW, Reich PB, Ruijven J, Schamp B, Smith MD, Soudzilovskaia NA, Tilman D, Weigelt A, Wilsey B, Manning P. 2018. Multiple facets of biodiversity drive the diversity-stability relationship. Nat Ecol Evolut 2(10):1579–1587.

    Article  Google Scholar 

  • Doak DF, Bigger D, Harding EK, Marvier MA, O’Malley RE, Thomson D. 1998. The statistical inevitability of stability-diversity relationships in community ecology. Am Nat 151:264–276.

    Article  CAS  PubMed  Google Scholar 

  • Dong SK, Tang L, Zhang XF, Liu SL, Liu QR, Su XK, Zhang Y, Wu XY, Zhao ZZ, Li Y, Sha W. 2017. Relationship between plant species diversity and functional diversity in alpine grasslands. Acta Ecol Sin 37(5):1472–1483. (in Chinese).

    Google Scholar 

  • Gao WL, Li LF, Munson SE, Cui XY, Wang YF, Hao YB. 2022. Grasslands maintain stability in productivity through compensatory effects and dominant species stability under extreme precipitation patterns. Ecosystems 25:1150–1165.

    Article  Google Scholar 

  • García-Palacios P, Gross N, Gaitán J, Maestre FT. 2018. Climate mediates the biodiversity - ecosystem stability relationship globally. Proc Nat Acad Sci 115(33):8400–8405.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grime JP. 1998. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J Ecol 86(6):902–910.

    Article  Google Scholar 

  • Grman E, Lau JA, Schoolmaster DR, Gross KL. 2010. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecol Lett 13:1400–1410.

    Article  PubMed  Google Scholar 

  • Gross K, Cardinale BJ, Fox JW, Gonzalez A, Loreau M, Polley HW, Reich Peter B, Ruijven JV. 2014. Species richness and the temporal stability of biomass production: A new analysis of recent biodiversity experiments. Am Nat 183(1):1–12.

    Article  PubMed  Google Scholar 

  • Guo Q, Hu ZM, Li SG, Yu GR, Sun XM, Zhang LM, Mu SL, Zhu XJ, Wang YF, Li YN, Zhao W. 2015. Contrasting responses of gross primary productivity to precipitation events in a water-limited and a temperature-limited grassland ecosystem. Agri For Meteorol 214:169–177.

    Article  Google Scholar 

  • Hallett LM, Hsu JS, Cleland EE, Collins SL, Dickson TL, Farrer EC, Suding KN. 2014. Biotic mechanisms of community stability shift along a precipitation gradient. Ecology 95(6):1693–1700.

    Article  PubMed  Google Scholar 

  • Hao AH, Xue X, Peng F, You QG, Liao J, Duan HC, Huang CH, Dong SY. 2020. Different vegetation and soil degradation characteristics of a typical grassland in the Qinghai-Tibetan Plateau. Acta Ecol Sin 40(3):964–975.

    CAS  Google Scholar 

  • Hautier Y, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hillebrand H, Lind EM, MacDougall AS, Stevens CJ, Bakker JD, Buckley YM, Chu CJ, Collins SL, Daleo P, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Jin VL, Klein JA, Knops JMH, La Pierre KJ, Li W, McCulley RL, Melbourne BA, Moore JL, O’Halloran LR, Prober SM, Risch AC, Sankaran M, Schuetz M, Hector A. 2014. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508:521–525.

    Article  CAS  PubMed  Google Scholar 

  • Hautier Y, Tilman D, Isbell F, Seabloom EW, Borer ET, Reich PB. 2015. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348(6232):336–340.

    Article  CAS  PubMed  Google Scholar 

  • Hector A, Hautier Y, Saner P, Wacker L, Bagchi R, Joshi J, Scherer LM, Spehn E, Bazeley WE, Weilenmann M, Caldeira M, Dimitrakopoulos P, Finn J, Huss DK, Jumpponen A, Mulder C, Palmborg C, Pereira J, Siamantziouras A, Terry A, Troumbis A, Schmid B, Loreau M. 2010. General stabilizing effects of plant diversity on grassland productivity at multiple sites through population asynchrony and overyielding. Ecology 91(8):2213–2220.

    Article  CAS  PubMed  Google Scholar 

  • Hoover DL, Knapp AK, Smith MD. 2014. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 95(9):2646–2656.

    Article  Google Scholar 

  • Huang K, Xia JY, Wang YP, Ahlström A, Chen JQ, Cook RB, Cui EQ, Fang YY, Fisher JB, Huntzinger DN, Li Z, Michalak AM, Qiao Y, Schaefer K, Schwalm C, Wang J, Wei YX, Xu XN, Yan LM, Bian CY, Luo YQ. 2018. Enhanced peak growth of global vegetation and its key mechanisms. Nat Ecol Evolut 2(12):1897–1905.

    Article  Google Scholar 

  • Huang MJ, Liu X, Zhou SR. 2020. Asynchrony among species and functional groups and temporal stability under perturbations: patterns and consequences. J Ecol 108(5):2038–2046.

    Article  CAS  Google Scholar 

  • IPCC. 2013. Climate change 2013: the physical science basis. Cambridge, UK: Cambridge University Press. p 1535.

    Google Scholar 

  • Isbell FL, Polley HW, Wilsey BJ. 2009. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol Lett 12:443–451.

    Article  PubMed  Google Scholar 

  • Isbell F, Craven D, Connolly J, Loreau M, Schmid B, Beierkuhnlein C, Bezemer TM, Bonin C, Bruelheide H, Luca E. De., Ebeling A, Griffin JN, Guo Q, Hautier Y, Hector A, Jentsch A, Kreyling J, Lanta V, Manning P, Meyer ST, Mori AS, Naeem S, Niklaus PA, Polley HW, Reich PB, Roscher C, Seabloom EW, Smith MD, Thakur MP, Tilman D, Tracy BF, Van Der Putten WH, Van Ruijven J, Weigelt A, Weisser WW, Wilsey B, Eisenhauer N. 2015. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526(7574):574–577.

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Pu ZC. 2009. Different effects of species diversity on temporal stability in single-trophic and multitrophic communities. Am Nat 174(5):651–659.

    Article  PubMed  Google Scholar 

  • Kigel J, Konsens I, Segev U, Sternberg M. 2021. Temporal stability of biomass in annual plant communities is driven by species diversity and asynchrony, but not dominance. J Veg Sci 32(2):e13012.

    Article  Google Scholar 

  • Knapp AK, Claus B, Briske DD, Classen AT, Luo YQ, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng ES. 2008. Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58(9):811–821.

    Article  Google Scholar 

  • Liu H, Mi ZR, Lin L, Wang YH, Zhang ZH, Zhang FW, Wang H, Liu LL, Zhu B, Cao GM, Zhao XQ, Sanders N, Classen AT, Reich PB, He JS. 2018. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc Natl Acad Sci 115(16):4051–4056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loreau M, Hector A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412(6842):72–76.

    Article  CAS  PubMed  Google Scholar 

  • Loreau M, Mazancourt CD. 2008. Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. Am Nat 172:48–66.

    Article  Google Scholar 

  • Loreau M, Mazancourt CD. 2013. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett 16(Suppl 1):106–115.

    Article  PubMed  Google Scholar 

  • Ma ZY, Liu HY, Mi ZR, Zhang ZH, Wang YH, Xu W, Jiang L, He JS. 2017. Climate warming reduces the temporal stability of plant community biomass production. Nat Commun 8(1):15378.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma FF, Zhang FY, Quan Q, Song B, Wang JS, Zhou QP Niu SL. 2020. Common species stability and species asynchrony rather than richness determine ecosystem stability under nitrogen enrichment. Ecosystems, (Suppl 1).

  • Mariotte P, Vandenberghe C, Kardol P, Hagedorn F, Buttler A. 2013. Subordinate plant species enhance community resistance against drought in semi-natural grasslands. J Ecol 101(3):763–773.

    Article  Google Scholar 

  • Muraina TO, Xu C, Yu Q, Yang YD, Jing MH, Jia XT, Jaman MS, Dam Q, Knapp AK, Collins SL, Luo YQ, Luo WT, Zuo XA, Xin XP, Han XG, Smith MD. 2021. Species asynchrony stabilises productivity under extreme drought across Northern China grasslands. J Ecol 109(4):1665–1675.

    Article  Google Scholar 

  • Niu SL, Fu Z, Luo YQ, Stoy PC, Keenan TF, Poulter B, Yu GR. 2017. Interannual variability of ecosystem carbon exchange: from observation to prediction. Glob Ecol Biogeogr 26(11):1225–1237.

    Article  Google Scholar 

  • Oliver TH, Isaac Nick J. B, August TA, Woodcock BA, Roy DB, Bullock JM. 2015. Declining resilience of ecosystem functions under biodiversity loss. Nat Commun 6:10122.

    Article  PubMed  Google Scholar 

  • Polley HW, Wilsey BJ, Derner JD. 2003. Do species evenness and plant density influence the magnitude of selection and complementarity effects in annual plant species mixtures? Ecol Lett 6(3):248–256.

    Article  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202.

    Article  CAS  Google Scholar 

  • Ruijven JV, Berendse F. 2007. Contrasting effects of diversity on the temporal stability of plant populations. Oikos 116(8):1323–1330.

    Article  Google Scholar 

  • Sasaki T, Lauenroth WK. 2011. Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia 166(3):761–768.

    Article  PubMed  Google Scholar 

  • Sasaki T, Lu X, Hirota M, Bai YF. 2019. Species asynchrony and response diversity determine multifunctional stability of natural grasslands. Journal of Ecology 107(4):1862–1875.

    Article  Google Scholar 

  • Schnabel F, Liu XJ, Kunz M, Barry KE, Bongers FJ, Bruelheide H, Fichtner A, Härdtle W, Li S, Pfaff CT, Schmid B, Schwarz JA, Tang ZY, Yang B, Bauhus J, Oheimb GV, Ma KP, Wirth C. 2021. Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree biodiversity experiment. Sci Adv 7(51):eabk1643.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuster MJ. 2016. Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie. Oecologia 180:645–655.

    Article  PubMed  Google Scholar 

  • Song MH, Yu FH. 2015. Reduced compensatory effects explain the nitrogen-mediated reduction in stability of an alpine meadow on the Tibetan Plateau. New Phytol 207(1):70–77.

    Article  PubMed  Google Scholar 

  • Song MH, Zong N, Jiang J, Shi PL, Zhang XZ, Gao JQ, Zhou HK, Li YK, Loreau Michel. 2019. Nutrient-induced shifts of dominant species reduce ecosystem stability via increases in species synchrony and population variability. Sci Total Environ 692:441–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang G, Hu L, Song XY, Li XZ, Wang CT. 2022. Response of plant roots in different diameter classes to changing precipitation in an alpine meadow. Acta Ecol Sin 42(15):6250–6264.

    Google Scholar 

  • Taylor LR. 1961. Aggregation, variance and the mean. Nature 189(4766):732–735.

    Article  Google Scholar 

  • Thibaut LM, Connolly SR, He FL. 2013. Understanding diversity–stability relationships: towards a unified model of portfolio effects. Ecol Lett 16(2):140–150.

    Article  PubMed  Google Scholar 

  • Tilman D. 1999. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 80:1455–1474.

    Google Scholar 

  • Tilman D, Lehman CL, Bristow CE. 1998. Diversity-stability relationships: statistical inevitability or ecological consequence? Am Nat 151(3):277–282.

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Reich PB, Knops JMH. 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441(7093):629–632.

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Quesada B, Xia LL, Butterbach-Bahl K, Goodale CL, Kiese R. 2019. Effects of climate warming on carbon fluxes in grasslands - a global meta-analysis. Glob Change Biol 25(5):1839–1851.

    Article  Google Scholar 

  • Wang CY, Wang JB, Zhang FW, Yang YS, Luo FL, Li YN, Li JX. 2022. Stability response of alpine meadow communities to temperature and precipitation changes on the Northern Tibetan Plateau. Ecol Evolut 12(2):8592.

    Article  Google Scholar 

  • Wright AJ, Ebeling A, Kroon HD, Roscher C, Weigelt A, Buchmann N, Buchmann T, Fischer C, Hacker N, Hildebrandt A, Leimer S, Mommer L, Oelmann Y, Scheu S, Steinauer K, Strecker T, Weisser W, Wilcke W, Eisenhauer N. 2015. Flooding disturbances increase resource availability and productivity but reduce stability in diverse plant communities. Nat Commun 6:6092.

    Article  CAS  PubMed  Google Scholar 

  • Wu ZT, Dijkstra P, Koch GW, Josep P, Bruce AH. 2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob Change Biol 17(2):927–942.

    Article  Google Scholar 

  • Xu Z, Ren H, Li M, van Ruijven J, Han X, Wan S, Jiang L. 2015. Environmental changes drive the temporal stability of semi-arid natural grasslands through altering species asynchrony. J Ecol 103:1308–1316.

    Article  Google Scholar 

  • Xu QN, Yang X, Yan Y, Wang SP, Loreau M, Jiang L. 2021. Consistently positive effect of species diversity on ecosystem, but not population, temporal stability. Ecol Lett 24(10):2256–2266.

    Article  PubMed  Google Scholar 

  • Yan ZQ, Qi YC, Peng Q, Dong YS, He YL, Li ZL. 2017. Advances in the effects of simulated precipitation and nitrogen deposition on grassland biomass. Acta Agres sin 25(6):1165–1170.

    CAS  Google Scholar 

  • Yang YH. 2018. Ecological processes in alpine ecosystems under changing environment. Chin J Plant Ecol 42:1–5.

    CAS  Google Scholar 

  • Yang G, Chen H, Wu N, Tian JQ, Peng CH, Zhu QA, Zhu D, He YX, Zheng QY, Zhang CB. 2014. Effects of soil warming, rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China. Soil Biol Biochem 78:83–89.

    Article  CAS  Google Scholar 

  • Yang ZL, Zhang Q, Su FL, Zhang CH, Pu ZC, Xia JY, WanJiang SQL. 2017. Daytime warming lowers community temporal stability by reducing the abundance of dominant, stable species. Global Change Bioly 23(1):154–163.

    Article  Google Scholar 

  • Yang DC, Hu L, Song XY, Wang CT. 2021. Effects of changing precipitation on litter quality and decomposition of different plant functional groups in an alpine meadow. Chin J Plant Ecol 45(12):1314–1328.

    Article  Google Scholar 

  • Zelikova TJ, Blumenthal DM, Williams DG, Souza L, LeCain DR, Morgan J, Pendall E. 2014. Long-term exposure to elevated CO2 enhances plant community stability by suppressing dominant plant species in a mixed-grass prairie. Proc Natl Acad Sci 111(43):15456–15461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang RH, Su FG, Jiang ZH, Gao XJ, Guo DL, Ni J, You QL, Lan C, Zhou BT. 2015. An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century. Chin Sci Bull 60:3036–3047. (in Chinese).

    Google Scholar 

  • Zhang FY, Quan Q, Song B, Sun J, Chen YJ, Zhou QP, Niu SL. 2017. Net primary productivity and its partitioning in response to precipitation gradient in an alpine meadow. Sci Rep 7(1):15193.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang YH, Loreau M, He NP, Wang JB, Pan QM, Bai YF, Han XG. 2018. Climate variability decreases species richness and community stability in a temperate grassland. Oecologia 188(1):183–192.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zi HB, Hu L, Wang CT, Wang GX, Wu PF, Lerdau M, Ade LJ. 2018. Responses of soil bacterial community and enzyme activity to experimental warming of an alpine meadow. Eur J Soil Sci 69(3):429–438.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Yang Youfang, Luo Xueping and Tang Guo for their help in fifield measurement. We thank the staff of Institute of Qinghai-Tibetan Plateau in Southwest University for Nationalities. This study was supported by the National Natural Science Foundation of China (U20A2008), the Second Tibetan Plateau Scientific Expedition and Research (STEP) Programme (2019QZKK0302-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changting Wang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 877 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, F., Song, X., Wang, C. et al. Species Diversity and Stability of Dominant Species Dominate the Stability of Community Biomass in an Alpine Meadow Under Variable Precipitation. Ecosystems 26, 1441–1455 (2023). https://doi.org/10.1007/s10021-023-00842-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-023-00842-4

Keywords

Navigation