Skip to main content
Log in

Community Trait Distribution Across Environmental Gradients

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Variability in community composition is often attributed to underlying differences in physical environments. However, predator–prey interactions can play an equally important role in structuring communities. Although environmental differences select for different species assemblages, less is known about their impacts on trait compositions. We develop a trait-based analysis of plankton communities of the southern California Current System across multiple trophic levels, from bacteria to mesozooplankton, and over a gradient of environmental conditions, from the oligotrophic open ocean to coastal upwelling. Across a factor of four differences in total community biomass, we observe similarities in the size structure along the environmental gradient, with the most pronounced departures from proportional variations in the biomasses found in the largest protists (> 40 µm). Differences in the trait distributions emerge within a small range of size groups: greater biomass contribution of larger autotrophs (> 10 µm) is observed only for the upwelling region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Andersen KH, Berge T, Gonçalves RJ, Hartvig M, Heuschele J, Hylander S, Jacobsen NS, Lindemann C, Martens EA, Neuheimer AB, Olsson KH, Palacz A, Prowe AEF, Sainmont J, Traving SJ, Visser AW, Wadhwa N, Kiørboe T. 2016. Characteristic sizes of life in the oceans, from bacteria to whales. Ann Rev Mar Sci 8:217–41.

    Article  CAS  PubMed  Google Scholar 

  • Andersen KHH, Beyer JEE. 2006. Asymptotic size determines species abundance in the marine size spectrum. Am Nat 168:54–61.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong R. 1999. Stable model structures for representing biogeochemical diversity and size spectra in plankton communities. J Plankton Res 21:445–64. https://academic.oup.com/plankt/article-lookup/doi/10.1093/plankt/21.3.445.

  • Barton AD, Finkel ZV, Ward BA, Johns DG, Follows MJ. 2013. On the roles of cell size and trophic strategy in North Atlantic diatom and dinoflagellate communities. Limnol Oceanogr 58:254–66.

    Article  Google Scholar 

  • Batchelder HP, Edwards CA, Powell TM. 2002. Individual-based models of copepod populations in coastal upwelling regions: Implications of physiologically and environmentally influenced diel vertical migration on demographic success and nearshore retention. Prog Oceanogr 53:307–33.

    Article  Google Scholar 

  • Boenigk J, Arndt H. 2000. Particle handling during interception feeding by four species of heterotrophic nanoflagellates. J Eukaryot Microbiol 47:350–8.

    Article  CAS  PubMed  Google Scholar 

  • Brun P, Payne MR, Kiørboe T. 2016. Trait biogeography of marine copepods—an analysis across scales. Ecol Lett 19:1403–13.

    Article  PubMed  Google Scholar 

  • Castellani C, Irigoien X, Harris RP, Lampitt RS. 2005. Feeding and egg production of Oithona similis in the North Atlantic. Mar Ecol Prog Ser 288:173–82.

    Article  Google Scholar 

  • Chakraborty S, Nielsen LT, Andersen KH. 2017. Trophic strategies of unicellular plankton. Am Nat 189:E77–90.

    Article  PubMed  Google Scholar 

  • Checkley DM, Barth JA. 2009. Patterns and processes in the California Current System. Prog Oceanogr 83:49–64.

    Article  Google Scholar 

  • Colebrook JM. 1977. Annual fluctuations in biomass of taxonomic groups of zooplankton in the California Current 1955–1959. Fish Bull 75:357–68.

    Google Scholar 

  • Cyr H, Pace ML. 1993. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361:148–50.

    Article  Google Scholar 

  • Falster DS, Brännström Å, Westoby M, Dieckmann U. 2017. Multitrait successional forest dynamics enable diverse competitive coexistence. Proc Natl Acad Sci 114:E2719–E2728.

    Article  CAS  PubMed  Google Scholar 

  • Fenchel T. 1980. Relation between particle size selection and clearance in suspension-feeding ciliates. Limnol Oceanogr 25:733–8.

    Article  Google Scholar 

  • Follows MJ, Dutkiewicz S. 2011. Modeling diverse communities of marine microbes. Ann Rev Mar Sci 3:427–51.

    Article  PubMed  Google Scholar 

  • Garrison DL, Gowing MM, Hughes MP, Campbell L, Caron DA, Dennett MR, Shalapyonok A, Olson RJ, Landry MR, Brown SL, Liu H-B, Azam F, Steward GF, Ducklow HW, Smith DC. 2000. Microbial food web structure in the Arabian Sea: a US JGOFS study. Deep Sea Res Part II 47:1387–422.

    Article  Google Scholar 

  • Gerritsen J, Strickler JR. 1977. Encouter probabilities and community structure in Zooplankton: a mathematical model. J Fish Res Board Can 34:73–82.

    Article  Google Scholar 

  • Gilmer RW, Harbison GR. 1986. Morphology and field behavior of pteropod molluscs: Feeding methods in the families Cavoliniidae, Limacinidae and Peraclididae (Gastropoda: Thecosomata). Mar Biol 91:47–57.

    Article  Google Scholar 

  • Gonzalez JM, Sherr EB, Sherr BF. 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microbiol 56:583–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorsky G, Ohman MD, Picheral M, Gasparini S, Stemmann L, Romagnan JB, Cawood A, Pesant S, García-Comas C, Prejger F. 2010. Digital zooplankton image analysis using the ZooScan integrated system. J Plankton Res 32:285–303.

    Article  Google Scholar 

  • Gravel D, Albouy C, Thuiller W. 2016. The meaning of functional trait composition of food webs for ecosystem functioning. Phil Trans R Soc B 371:20150268.

    Article  PubMed  Google Scholar 

  • Hartmann M, Grob C, Tarran GA, Martin AP, Burkill PH, Scanlan DJ, Zubkov MV. 2012. Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc Natl Acad Sci U S A 109:5756–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Irigoien X, Huisman J, Harris RP. 2004. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429:863–7.

    Article  CAS  PubMed  Google Scholar 

  • Johnson CL, Checkley DM. 2004. Vertical distribution of diapausing Calanus pacificus (Copepoda) and implications for transport in the California undercurrent. Prog Oceanogr 62:1–13.

    Article  Google Scholar 

  • Kenitz KM, Visser AW, Mariani P, Andersen KH. 2017. Seasonal succession in zooplankton feeding traits reveals trophic trait coupling. Limnol Oceanogr 62:1184–97.

    Article  Google Scholar 

  • Kiørboe T. 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv Mar Biol 29:1–72.

    Article  Google Scholar 

  • Kiørboe T. 2008. Optimal swimming strategies in mate-searching pelagic copepods. Oecologia 155:179–92.

    Article  PubMed  Google Scholar 

  • Kiørboe T. 2011. How zooplankton feed: mechanisms, traits and trade-offs. Biol Rev 86:311–39.

    Article  PubMed  Google Scholar 

  • Lavaniegos BE, Ohman MD. 2007. Coherence of long-term variations of zooplankton in two sectors of the California Current System. Prog Oceanogr 75:42–69.

    Article  Google Scholar 

  • Lynn RJ, Simpson JJ. 1987. The California Current system: the seasonal variability of its physical characteristics. J Geophys Res 92:12947.

    Article  Google Scholar 

  • MacGinitie GE. 1939. The method of feeding of tunicates. Biol Bull 77:443–7.

    Article  Google Scholar 

  • Margalef R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1:493–509.

    Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M. 2006. Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–85.

    Article  Google Scholar 

  • Mitchell JG, Pearson L, Bonazinga A, Dillon S, Khouri H, Paxinos R. 1995. Long lag times and high velocities in the motility of natural assemblages of marine bacteria. Appl Environ Microbiol 61:877–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mullin MM. 1998. Biomasses of large-celled phytoplankton and their relation to the nitricline and grazing in the California Current System off Southern California, 1994–1996. CalCOFI Reports 39:117–23.

    Google Scholar 

  • Ohman MD. 1990. The demographic benefits of diel vertical migration by zooplankton. Ecol Monogr 60:257–81.

    Article  Google Scholar 

  • Ohman MD, Romagnan J-B. 2016. Nonlinear effects of body size and optical attenuation on diel vertical migration by zooplankton. Limnol Oceanogr 61:765–70.

    Article  Google Scholar 

  • Pahlow M, Riebesell U, Wolf-Gladrow DA. 1997. Impact of cell shape and chain formation on nutrient acquisition by marine diatoms. Limnol Oceanogr 42:1660–72.

    Article  Google Scholar 

  • Peláez J, McGowan JA. 1986. Phytoplankton pigment patterns in the California Current as determined by satellite. Limnol Oceanogr 31:927–50.

    Article  Google Scholar 

  • Peterson W. 1998. Life cycle strategies of copepods in coastal upwelling zones. J Mar Syst 15:313–26.

    Article  Google Scholar 

  • Pfister G, Arndt H. 1998. Food selectivity and feeding behaviour in omnivorous filter-feeding ciliates: A case study for Stylonychia. Eur J Protistol 34:446–57.

    Article  Google Scholar 

  • Polis GA. 1999. Are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos 86:3–15.

    Article  Google Scholar 

  • Raven JA. 1986. Physiological consequences of extremely small size for autotrophic organisms in the sea. In: Platt T, Li WKW, editors. Photosynthetic Picoplankton. Can Bull Fish Aquat Sci. pp 1–70.

  • Rykaczewski RR, Checkley DM. 2008. Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc Natl Acad Sci 105:1965–70.

    Article  PubMed  Google Scholar 

  • Saiz E, Kiørboe T. 1995. Predatory and suspension feeding of the copepod Acartia tonsa in turbulent environments. Mar Ecol Prog Ser 122:147–58.

    Article  Google Scholar 

  • San Martin E, Harris RP, Irigoien X. 2006. Latitudinal variation in plankton size spectra in the Atlantic Ocean. Deep Sea Res Part II 53:1560–72.

    Article  Google Scholar 

  • Sheldon RW, Prakash A, Sutcliffe WH. 1972. The size distribution of particles in the ocean. Limnol Oceanogr 17:327–40.

    Article  Google Scholar 

  • Shurin JB, Gruner DS, Hillebrand H. 2006. All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc R Soc B Biol Sci 273:1–9.

    Article  Google Scholar 

  • van Bodegom PM, Douma JC, Verheijen LM. 2014. A fully traits-based approach to modeling global vegetation distribution. Proc Natl Acad Sci U S A 111:13733–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Someren Gréve H, Almeda R, Kiørboe T. 2017. Motile behavior and predation risk in planktonic copepods. Limnol Oceanogr 62:1810–24.

    Article  Google Scholar 

  • Taylor AG, Landry MR. 2018. Phytoplankton biomass and size structure across trophic gradients in the southern California Current and adjacent ocean ecosystems. Mar Ecol Prog Ser 592:1–17.

    Article  CAS  Google Scholar 

  • Taylor AG, Landry MR, Selph KE, Wokuluk JJ. 2015. Temporal and spatial patterns of microbial community biomass and composition in the Southern California Current Ecosystem. Deep Sea Res Part II 112:117–28.

    Article  CAS  Google Scholar 

  • Tilman D. 1990. Constraints and tradeoffs: toward a predictive theory of competition and succession. Oikos 58:3–15.

    Article  Google Scholar 

  • Tönnesson K, Tiselius P. 2005. Diet of the chaetognaths Sagitta setosa and S. elegans in relation to prey abundance and vertical distribution. Mar Ecol Prog Ser 289:177–90.

    Article  Google Scholar 

  • Verity PG, Smetacek V. 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar Ecol Prog Ser 130:277–93.

    Article  Google Scholar 

  • Ward BA, Dutkiewicz S, Barton AD, Follows MJ. 2011. Biophysical aspects of resource acquisition and competition in algal mixotrophs. Am Nat 178:98–112.

    Article  PubMed  Google Scholar 

  • Westoby M, Wright IJ. 2006. Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–8.

    Article  PubMed  Google Scholar 

  • Zaret TM, Suffern S. 1976. Vertical migration in zooplankton as a predator avoidance mechanism. Limnol Oceanogr 21:804–13.

    Article  Google Scholar 

  • Zubkov MV, Sleigh MA, Burkill PH, Leakey RJG. 2000. Picoplankton community structure on the Atlantic Meridional Transect: A comparison between seasons. Prog Oceanogr 45:369–86.

    Article  Google Scholar 

Download references

Acknowledgments

Data and participation from CCE-LTER were supported by US National Science Foundation Grants OCE-04-17616 and OCE-10-26607. This work was supported by the Centre for Ocean Life, a VKR Centre of excellence funded by the Villum Foundation, and the Gordon and Betty Moore Foundation (#5479). The authors thank Philipp Brun for his assistance and guidance during the application of the statistical analysis and Thomas Kiørboe and Martin Lindegren for insightful discussions during concept development. The authors would also like to acknowledge Emma Tovar for her continued efforts in conducting the ZooScan analysis for the CCE-LTER programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasia M. Kenitz.

Additional information

Data collected as a part of the California Current Ecosystem LTER programme can be found at https://oceaninformatics.ucsd.edu/datazoo/catalogs/ccelter/datasets.

Author Contributions

KMK, KHA and AWV developed the concept of the trait-based analysis presented in the study. KMK conducted the analysis and prepared the first draft of the manuscript. KHA, AWV and MDO provided the supervision and guidance during the study progression. MDO contributed the mesozooplankton data and assistance with characterizations of zooplankton traits and ocean hydrography. MRL contributed pico-, nano- and microplankton data and guidance with characterizations of resource acquisition traits. All authors provided critical feedback and substantially contributed to manuscript revisions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Supplementary material 2 (PDF 947 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenitz, K.M., Visser, A.W., Ohman, M.D. et al. Community Trait Distribution Across Environmental Gradients. Ecosystems 22, 968–980 (2019). https://doi.org/10.1007/s10021-018-0314-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-018-0314-5

Keywords

Navigation