Skip to main content
Log in

Transient Grazing and the Dynamics of an Unanticipated Coral–Algal Phase Shift

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Extreme disturbances often lead to community reorganisations, yet sometimes ecosystems unexpectedly fail to recover. Such surprising outcomes may pinpoint important yet overlooked mechanisms that drive ecosystems into undesirable states. Using long-term field observations, experimental manipulations and mechanistic modelling, we document the drivers of an unexpected phase shift from coral to macroalgal dominance following typhoon disturbance on reefs in Palau (Micronesia). After extensive coral mortality, an ephemeral bloom of a canopy-forming macroalga (Liagora sp.) provided physical refuge from herbivore grazing, resulting in the establishment of a secondary, understory macroalga (Lobophora spp.). After disappearance of Liagora canopies and resulting loss of grazing refuge, the Lobophora patches continued to expand and led to a macroalgal (Lobophora-) dominated state that has persisted for more than 2 years. We developed a mechanistic model of Lobophora patch dynamics parameterised with rates of growth measured in situ to simulate the observed proliferation of Lobophora under variable grazing refuges in space and time. Model simulations showed that short-term escapes from grazing were pivotal in allowing establishment of patches of Lobophora. Ephemeral grazing refuges created an opportunity to reach a cover above which Lobophora growth exceeds grazing, so that Lobophora could expand after disappearance of Liagora canopies. Critically, in the absence of grazing refuge, herbivore biomass was sufficient to prevent the establishment of Lobophora patches. Our model demonstrates that with rapid algal growth and low grazing, a relatively minor grazing refuge (6 month) is sufficient to escape herbivore control after extensive coral mortality, leading to unexpected recovery failure. Transient fluctuations in the intensity of control mechanisms, such as herbivore grazing, can have disproportionate and long-lasting effects on community structure. Overall, this study stresses that our perception of reef dynamics must integrate the time scales at which reefs can be sensitive to transient changes in mechanisms promoting coral dominance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Anthony K, Maynard JA, Diaz-Pulido G, Mumby PJ, Marshall PA, Cao L, Hoegh-Guldberg O. 2011. Ocean acidification and warming will lower coral reef resilience. Glob Change Biol 17:1798–808.

    Article  Google Scholar 

  • Aronson RB, Precht WF. 2001. White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460:25–38.

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M. 2004. Confronting the coral reef crisis. Nature 429:827–33.

    Article  CAS  PubMed  Google Scholar 

  • Benedetti-Cecchi L. 2003. The importance of the variance around the mean effect size of ecological processes. Ecology 84:2335–46.

    Article  Google Scholar 

  • Bennett S, Vergés A, Bellwood DR. 2010. Branching coral as a macroalgal refuge in a marginal coral reef system. Coral Reefs 29:471–80.

    Article  Google Scholar 

  • Bozec Y-M, Mumby PJ. 2015. Synergistic impacts of global warming on the resilience of coral reefs. Philos Trans R Soc B 370:20130267.

    Article  Google Scholar 

  • Bozec Y-M, O’Farrell S, Bruggemann JH, Luckhurst BE, Mumby PJ. 2016. Tradeoffs between fisheries harvest and the resilience of coral reefs. Proc Natl Acad Sci 113:4536–41.

    Article  CAS  PubMed  Google Scholar 

  • Bruno J, Siddon C, Witman J, Colin P, Toscano M. 2001. El Nino related coral bleaching in Palau, western Caroline Islands. Coral Reefs 20:127–36.

    Article  Google Scholar 

  • Bruno JF, Sweatman H, Precht WF, Selig ER, Schutte VG. 2009. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90:1478–84.

    Article  PubMed  Google Scholar 

  • Castro-Sanguino C, Lovelock C, Mumby PJ. 2016. The effect of structurally complex corals and herbivory on the dynamics of Halimeda. Coral Reefs 35:597–609.

    Article  Google Scholar 

  • Cheal AJ, MacNeil MA, Cripps E, Emslie MJ, Jonker M, Schaffelke B, Sweatman H. 2010. Coral–macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29:1005–15.

    Article  Google Scholar 

  • Clements KD, German DP, Piché J, Tribollet A, Choat JH. 2016. Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol J Linn Soc 120:729–51.

    Google Scholar 

  • Coen LD, Tanner CE. 1989. Morphological variation and differential susceptibility to herbivory in the tropical brown alga Lobophora variegata. Mar Ecol Prog Ser 54:287–98.

    Article  Google Scholar 

  • Cuddington K, Fortin M-J, Gerber LR, Hastings A, Liebhold A, O’connor M, Ray C. 2013. Process-based models are required to manage ecological systems in a changing world. Ecosphere 4:20.

    Article  Google Scholar 

  • Denny MW, Hunt LJ, Miller LP, Harley CD. 2009. On the prediction of extreme ecological events. Ecol Monogr 79:397–421.

    Article  Google Scholar 

  • Diaz-Pulido G, McCook LJ, Dove S, Berkelmans R, Roff G, Kline DI, Weeks S, Evans RD, Williamson DH, Hoegh-Guldberg O. 2009. Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PLoS ONE 4:e5239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doak DF, Estes JA, Halpern BS, Jacob U, Lindberg DR, Lovvorn J, Monson DH, Tinker MT, Williams TM, Wootton JT. 2008. Understanding and predicting ecological dynamics: are major surprises inevitable. Ecology 89:952–61.

    Article  PubMed  Google Scholar 

  • Done TJ. 1992. Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247:121–32.

    Article  Google Scholar 

  • Done T, Turak E, Wakeford M, DeVantier L, McDonald A, Fisk D. 2007. Decadal changes in turbid-water coral communities at Pandora Reef: loss of resilience or too soon to tell? Coral Reefs 26:789–805.

    Article  Google Scholar 

  • Doropoulos C, Roff G, Bozec Y-M, Zupan M, Werminghausen J, Mumby PJ. 2016. Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol Monogr 86:20–44.

    Google Scholar 

  • Doropoulos C, Roff G, Visser M-S, Mumby PJ. 2017. Sensitivity of coral recruitment to subtle shifts in early community succession. Ecology 98:304–14.

    Article  PubMed  Google Scholar 

  • Doropoulos C, Roff G, Zupan M, Nestor V, Isechal AL, Mumby PJ. 2014. Reef-scale failure of coral settlement following typhoon disturbance and macroalgal bloom in Palau, Western Pacific. Coral Reefs 33:613–23.

    Article  Google Scholar 

  • Dray S, Dufour A-B. 2007. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20.

    Article  Google Scholar 

  • Evans MR, Bithell M, Cornell SJ, Dall SR, Díaz S, Emmott S, Ernande B, Grimm V, Hodgson DJ, Lewis SL. 2013. Predictive systems ecology. Proc R Soc B Biol Sci 280:20131452.

    Article  Google Scholar 

  • Ferrari R, Gonzalez-Rivero M, Ortiz JC, Mumby PJ. 2012. Interaction of herbivory and seasonality on the dynamics of Caribbean macroalgae. Coral Reefs 31:683–92.

    Article  Google Scholar 

  • Fox RJ, Bellwood DR. 2007. Quantifying herbivory across a coral reef depth gradient. Mar Ecol Prog Ser 339:49–59.

    Article  Google Scholar 

  • Fung T, Seymour RM, Johnson CR. 2011. Alternative stable states and phase shifts in coral reefs under anthropogenic stress. Ecology 92:967–82.

    Article  PubMed  Google Scholar 

  • Gaines SD, Denny MW. 1993. The largest, smallest, highest, lowest, longest, and shortest: extremes in ecology. Ecology 74:1677–92.

    Article  Google Scholar 

  • Golbuu Y, Victor S, Penland L, Idip D Jr, Emaurois C, Okaji K, Yukihira H, Iwase A, Van Woesik R. 2007. Palau’s coral reefs show differential habitat recovery following the 1998-bleaching event. Coral Reefs 26:319–32.

    Article  Google Scholar 

  • Graham NA, Jennings S, MacNeil MA, Mouillot D, Wilson SK. 2015. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518:94–7.

    Article  CAS  PubMed  Google Scholar 

  • Hastings A. 2004. Transients: the key to long-term ecological understanding? Trends Ecol Evol 19:39–45.

    Article  PubMed  Google Scholar 

  • Hay ME. 1981. Spatial patterns of agrazing intensity on a caribbean barrier reef: herbivory and algal distribution. Aquat Bot 11:97–109.

    Article  Google Scholar 

  • Hixon MA, Brostoff WN. 1996. Succession and herbivory: effects of differential fish grazing on Hawaiian coral-reef algae. Ecol Monogr 66:67–90.

    Article  Google Scholar 

  • Holling CS. 1996. Surprise for science, resilience for ecosystems, and incentives for people. Ecol Appl 6:733–5.

    Article  Google Scholar 

  • Hughes TP. 1994. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–51.

    Article  CAS  PubMed  Google Scholar 

  • Kuffner IB, Walters LJ, Becerro MA, Paul VJ, Ritson-Williams R, Beach KS. 2006. Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar Ecol Prog Ser 323:107–17.

    Article  Google Scholar 

  • Lewis SM. 1986. The role of herbivorous fishes in the organization of a Caribbean reef community. Ecol Monogr 56:183–200.

    Article  Google Scholar 

  • Lindenmayer DB, Likens GE, Krebs CJ, Hobbs RJ. 2010. Improved probability of detection of ecological “surprises”. Proc Natl Acad Sci 107:21957–62.

    Article  PubMed  Google Scholar 

  • Lubchenco J, Gaines SD. 1981. A unified approach to marine plant-herbivore interactions. I. Populations and communities. Annu Rev Ecol Syst 12:405–37.

    Article  Google Scholar 

  • McManus JW, Polsenberg JF. 2004. Coral–algal phase shifts on coral reefs: ecological and environmental aspects. Prog Oceanogr 60:263–79.

    Article  Google Scholar 

  • Morrison D. 1988. Comparing fish and urchin grazing in shallow and deeper coral reef algal communities. Ecology 69:1367–82.

    Article  Google Scholar 

  • Mumby PJ. 2006. The impact of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs. Ecol Appl 16:747–69.

    Article  PubMed  Google Scholar 

  • Mumby PJ, Bejarano S, Golbuu Y, Steneck RS, Arnold SN, Van Woesik R, Friedlander AM. 2013. Empirical relationships among resilience indicators on Micronesian reefs. Coral Reefs 32:213–26.

    Article  Google Scholar 

  • Mumby PJ, Hastings A, Edwards HJ. 2007. Thresholds and the resilience of Caribbean coral reefs. Nature 450:98–101.

    Article  CAS  PubMed  Google Scholar 

  • Mumby PJ, Steneck RS. 2008. Coral reef management and conservation in light of rapidly evolving ecological paradigms. Trends Ecol Evol 23:555–63.

    Article  PubMed  Google Scholar 

  • Mumby PJ, Steneck RS, Adjeroud M, Arnold SN. 2016. High resilience masks underlying sensitivity to algal phase shifts of Pacific coral reefs. Oikos 125:644–55.

    Article  Google Scholar 

  • Mumby PJ, Wolff NH, Bozec Y-M, Chollett I, Halloran P. 2014. Operationalizing the resilience of coral reefs in an era of climate change. Conserv Lett 7:176–87.

    Article  Google Scholar 

  • Paine RT, Tegner MJ, Johnson EA. 1998. Compounded perturbations yield ecological surprises. Ecosystems 1:535–45.

    Article  Google Scholar 

  • Paul VJ, Hay ME. 1986. Seaweed susceptibility to herbivory: chemical and morphological correlates. Mar Ecol Prog Ser 33:255–64.

    Article  CAS  Google Scholar 

  • Pillans RD, Franklin CE, Tibbetts IR. 2004. Food choice in Siganus fuscescens: influence of macrophyte nutrient content and availability. J Fish Biol 64:297–309.

    Article  Google Scholar 

  • R Core Team (2015). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Ritz C, Streibig JC. 2008. Nonlinear regression with R. Berlin: Springer.

    Google Scholar 

  • Roff G, Chollett I, Doropoulos C, Golbuu Y, Steneck RS, Isechal AL, van Woesik R, Mumby PJ. 2015a. Exposure-driven macroalgal phase shift following catastrophic disturbance on coral reefs. Coral Reefs 34:715–25.

    Article  Google Scholar 

  • Roff G, Doropoulos C, Zupan M, Rogers A, Steneck RS, Golbuu Y, Mumby PJ. 2015b. Phase shift facilitation following cyclone disturbance on coral reefs. Oecologia 178:1193–203.

    Article  PubMed  Google Scholar 

  • Roff G, Mumby PJ. 2012. Global disparity in the resilience of coral reefs. Trends Ecol Evol 27:404–13.

    Article  PubMed  Google Scholar 

  • Sandin SA, McNamara DE. 2012. Spatial dynamics of benthic competition on coral reefs. Oecologia 168:1079–90.

    Article  PubMed  Google Scholar 

  • Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, Van Nes EH, Rietkerk M, Sugihara G. 2009. Early-warning signals for critical transitions. Nature 461:53–9.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer M, Carpenter SR. 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–56.

    Article  Google Scholar 

  • Scheffer M, Van Nes EH, Holmgren M, Hughes T. 2008. Pulse-driven loss of top-down control: the critical-rate hypothesis. Ecosystems 11:226–37.

    Article  Google Scholar 

  • Sotka EE, Hay ME. 2009. Effects of herbivores, nutrient enrichment, and their interactions on macroalgal proliferation and coral growth. Coral Reefs 28:555–68.

    Article  Google Scholar 

  • Steneck RS. 1988. Herbivory on coral reefs: a synthesis. Proc 6th Int Coral Reef Symp 1:37–49.

    Google Scholar 

  • Vieira C, Thomas OP, Culioli G, Genta-Jouve G, Houlbreque F, Gaubert J, De Clerck O, Payri CE. 2016. Allelopathic interactions between the brown algal genus Lobophora (Dictyotales, Phaeophyceae) and scleractinian corals. Sci Rep 6:18637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams ID, Polunin NV, Hendrick VJ. 2001. Limits to grazing by herbivorous fishes and the impact of low coral cover on macroalgal abundance on a coral reef in Belize. Mar Ecol Prog Ser 222:187–96.

    Article  Google Scholar 

  • Williams JW, Jackson ST. 2007. Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–82.

    Article  Google Scholar 

  • Wilson SK, Bellwood DR, Choat JH, Furnas MJ. 2003. Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanogr Mar Biol Annu Rev 41:279–309.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Castro-Sanguino and G. Diaz-Pulido for helpful comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves-Marie Bozec.

Additional information

Authors’ Contribution

Y-MB and PJM conceived the methodology; CD and GR collected the benthic cover data and ran the caging experiment with PJM; PJM conducted fish surveys; Y-MB estimated macroalgal covers from photographs, performed data analysis and modelling, and completed manuscript preparation. All authors assisted in data and model interpretation, and manuscript revision.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozec, YM., Doropoulos, C., Roff, G. et al. Transient Grazing and the Dynamics of an Unanticipated Coral–Algal Phase Shift. Ecosystems 22, 296–311 (2019). https://doi.org/10.1007/s10021-018-0271-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-018-0271-z

Keywords

Navigation