Skip to main content

Advertisement

Log in

Retention of Nitrogen Following Wildfire in a Chaparral Ecosystem

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Wildfires alter nitrogen (N) cycling in Mediterranean-type ecosystems, resetting plant and soil microbial growth, combusting plant biomass to ash, and enhancing N availability in the upper soil layer. This ash and soil N pool (that is, wildfire N) is susceptible to loss from watersheds via runoff and leaching during post-fire rains. Plant and soil microbial recovery may mitigate these losses by sequestering N compounds in new biomass, thereby promoting landscape N retention in N-limited chaparral ecosystems. We investigated the relative balance between wildfire N loss, and plant and soil microbial N uptake and stream N export for an upland chaparral watershed in southern California that burned (61%) in a high-intensity wildfire in 2009 by using a combination of stream, vegetation, soil microbial, and remote sensing analyses. Soil N in the burn scar was 440% higher than unburned soil N in the beginning of the first post-fire wet season and returned within 66 days to pre-fire levels. Stream N export was 1480% higher than pre-fire export during the first post-fire rain and returned within 106 days over the course of the following three rainstorms to pre-fire levels. A watershed-scale N mass balance revealed that 52% of wildfire N could be accounted for in plant and soil microbial growth, whereas 1% could be accounted for in stream export of dissolved nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Beighley RE, Dunne T, Melack JM. 2005. Understanding and modeling basin hydrology: interpreting the hydrogeological signature. Hydrol Process 19:1333–53.

    Article  Google Scholar 

  • Beighley RE, Dunne T, Melack JM. 2008. Impacts of climate variability and land use alterations on frequency distributions of terrestrial runoff loading to coastal waters in Southern California. J Am Water Resour Assoc 44:62–74.

    Article  Google Scholar 

  • Bixby RJ, Cooper SD, Gresswell RE, Brown LE, Dahm CN, Dwire KA. 2015. Fire effects on aquatic ecosystems: an assessment of the current state of the science. Freshw Sci.

  • Blank JL, Olson RK, Vitousek PM. 1980. Nutrient uptake by a diverse spring ephemeral community. Oecologia 47:96–8.

    Article  Google Scholar 

  • Buchanan T, Somers W. 1969. Discharge measurements at gaging stations. In: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3.

  • Carreira J, Niell FX, Lajtha K. 1994. Soil nitrogen availability and nitrification in Mediterranean shrublands of varying fire history and successional stage. Biogeochemistry 26:189–209.

    Article  Google Scholar 

  • Christensen NL. 1973. Fire and the nitrogen cycle in California chaparral. Science 181:66–8.

    Article  CAS  Google Scholar 

  • Christensen NL, Muller CH. 1975. Effects of fire on factors controlling plant growth in Adenostoma chaparral. Ecol Monogr 45:29–55.

    Article  Google Scholar 

  • Coombs JS, Melack JM. 2013. Initial impacts of a wildfire on hydrology and suspended sediment and nutrient export in California chaparral watersheds. Hydrol Process 27:3842–51.

    Article  Google Scholar 

  • DeBano L. 2000. The role of fire and soil heating on water repellency in wildland environments: a review. J Hydrol 231:195–206.

    Article  Google Scholar 

  • Debano LF, Conrad CE. 1978. The effect of fire on nutrients in a chaparral ecosystem. Ecology 59:489–97.

    Article  CAS  Google Scholar 

  • Diblee TW. 1966. Geology of the Central Santa Ynez Mountains, Santa Barbara County. California Division of Mines Geological Bulletin: California. p 186.

    Google Scholar 

  • Dunn PH, DeBano LF, Eberlein GE. 1979. Effects of burning on chaparral soils: II. Soil microbes and nitrogen mineralization. Soil Sci Soc Am J 43:509.

    Article  CAS  Google Scholar 

  • Earl SR, Blinn DW. 2003. Effects of wildfire ash on water chemistry and biota. Freshw Biol:1015–30.

  • Fenn ME, Poth MA, Dunn PH, Barro SC. 1993. Microbial N and biomass, respiration and N mineralization in soils beneath two chaparral species along a fire-induced age gradient. Soil Biol Biochem 25:457–66.

    Article  Google Scholar 

  • Fierer N, Schimel JP. 2002. Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–87.

    Article  CAS  Google Scholar 

  • Fotheringham AS, Brunsdon C, Charlton M. 2002. Geographically weighted regression: the analysis of spatially varying relationships. Wiley.

  • Goodridge BM, Melack JM. 2012. Land use control of stream nitrate concentrations in mountainous coastal California watersheds. J Geophys Res Biogeosciences 117:G02005.

    Article  Google Scholar 

  • Gray JT, Schlesinger WH. 1981. Nutrient cycling in Mediterranean type ecosystems. In: Resource use by chaparral and matorral. pp 259–85.

    Google Scholar 

  • Grogan P, Burns TD, Chapin FSIII. 2000. Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia 122:537–44.

    Article  CAS  Google Scholar 

  • Guo Q. 2001. Early post-fire succession in California chaparral: Changes in diversity, density, cover and biomass. Ecol Res 16:471–85.

    Article  Google Scholar 

  • Hanan EJ, D’Antonio CM, Roberts DA, Schimel JP. 2016a. Factors regulating nitrogen retention during the early stages of recovery from fire in coastal chaparral ecosystems. Ecosystems 19:910–26.

    Article  CAS  Google Scholar 

  • Hanan EJ, Schimel JP, Dowdy K, D’Antonio CM. 2016b. Effects of substrate supply, pH, and char on net nitrogen mineralization and nitrification along a wildfire-structured age gradient in chaparral. Soil Biol Biochem 95:87–99.

    Article  CAS  Google Scholar 

  • Hanan EJ, Tague C (Naomi), Schimel JP. 2017. Nitrogen cycling and export in California chaparral: the role of climate in shaping ecosystem responses to fire. Ecol Monogr 87:76–90.

  • Hart SC, Deluca TH, Newman GS, MacKenzie MD, Boyle SI. 2005. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For Ecol Manage 220:166–84.

    Article  Google Scholar 

  • Hill AR. 1996. Nitrate removal in stream riparian zones. J Environ Qual 25:743.

    Article  CAS  Google Scholar 

  • Keeley JE, Keeley SC. 1981. Post-fire regeneration of southern California chaparral. Am J Bot 68:524.

    Article  Google Scholar 

  • Keeley SC, Keeley JE, Hutchinson SM, Johnson AW. 1981. Postfire succession of the herbaceous flora in southern California chaparral. Ecology 62:1608–21.

    Article  Google Scholar 

  • Klimeš L, Klimešová J. 1994. Biomass allocation in a clonal vine: Effects of intraspecific competition and nutrient availability. Folia Geobot Phytotaxon 29:237–44.

    Article  Google Scholar 

  • Knicker H. 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85:91–118.

    Article  CAS  Google Scholar 

  • Kummerow J, Alexander JV, Neel JW, Fishbeck K. 1978. Symbiotic nitrogen fixation in Ceanothus roots. Am J Bot 65:63.

    Article  CAS  Google Scholar 

  • Kummerow J, Krause D, Jow W. 1977. Root systems of chaparral shrubs. Oecologia 29:163–77.

    Article  Google Scholar 

  • Lachat. 1989. Operations manual for the QuikChem automated ion analyzer. Anal Chem 61:272A.

  • Li X, Meixner T, Sickman JO, Miller AE, Schimel JP, Melack JM. 2006. Decadal-scale dynamics of water, carbon and nitrogen in a California chaparral ecosystem: DAYCENT modeling results. Biogeochemistry 77:217–45.

    Article  CAS  Google Scholar 

  • Marion GM, Moreno JM, Oechel WC. 1991. Fire severity, ash deposition, and clipping effects on soil nutrients in chaparral. Soil Sci Soc Am J 55:235–40.

    Article  CAS  Google Scholar 

  • Mayer PM, Reynolds SK, McCutchen MD, Canfield TJ. 2007. Meta-analysis of nitrogen removal in riparian buffers. J Environ Qual 36:1172.

    Article  CAS  Google Scholar 

  • McKenzie D, Gedalof Z, Peterson DL, Mote P. 2004. Climatic Change, Wildfire, and Conservation. Conserv Biol 18:890–902.

    Article  Google Scholar 

  • Meixner T, Fenn ME, Wohlgemuth P, Oxford M, Riggan P. 2006. N saturation symptoms in chaparral catchments are not reversed by prescribed fire. Environ Sci Technol 40:2887–94.

    Article  CAS  Google Scholar 

  • Moreno JM, Oechel WC, Eds. 1994. The Role of Fire in Mediterranean-Type Ecosystems. New York, NY: Springer.

    Google Scholar 

  • Morford SL, Houlton BZ, Dahlgren RA. 2016. Geochemical and tectonic uplift controls on rock nitrogen inputs across terrestrial ecosystems. Global Biogeochem Cycles 30:333–49.

    Article  CAS  Google Scholar 

  • Muller RN, Bormann FH. 1976. Role of Erythronium americanum in energy flow and nutrient dynamics of a northern hardwood forest ecosystem. Science 193:1126–8.

    Article  CAS  Google Scholar 

  • Naiman RJ, Decamps H. 1997. The ecology of interfaces: riparian zones. Annu Rev Ecol Syst 28:621–58.

    Article  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U. 2009. Uptake of organic nitrogen by plants. New Phytol 182:31–48.

    Article  Google Scholar 

  • Neary DG, Klopatek CC, DeBano LF, Ffolliott PF. 1999. Fire effects on belowground sustainability: a review and synthesis. For Ecol Manage 122:51–71.

    Article  Google Scholar 

  • Padgett P, Allen EB, Bytnerowicz A, Minich RA. 1999. Changes in soil inorganic nitrogen as related to atmospheric nitrogenous pollutants in southern California. Atmos Environ 33:769–81.

    Article  CAS  Google Scholar 

  • Rademacher LK, Clark JF, Boles JR. 2002. Groundwater residence times and flow paths in fractured rock determined using environmental tracers in the Mission Tunnel; Santa Barbara County, California, USA. Environ Geol 43:557–67.

    Article  Google Scholar 

  • Raison RJ. 1979. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: A review. Plant Soil 51:73–108.

    Article  CAS  Google Scholar 

  • Riggan PJ, Lockwood RN, Jacks PM, Coiver CG, Weirich F, Debano LF, Brass JA. 1994. Effects of fire severity on nitrate mobilization in watersheds subject to chronic atmospheric deposition. Environ Sci Technol 28:369–75.

    Article  CAS  Google Scholar 

  • Riggan PJ, Lockwood RN, Lopez EN. 1985. Deposition and processing of airborne nitrogen pollutants in Mediterranean-type ecosystems of southern California. Environ Sci Technol 19:781–9.

    Article  CAS  Google Scholar 

  • Roberts DA, Dennison PE, Gardner ME, Hetzel Y, Ustin SL, Lee CT. 2003. Evaluation of the potential of hyperion for fire danger assessment by comparison to the airborne visible/infrared imaging spectrometer. IEEE Trans Geosci Remote Sens 41:1297–310.

    Article  Google Scholar 

  • Roberts DA, Gardner M, Church R, Ustin S, Scheer G, Green RO. 1998. Mapping chaparral in the Santa Monica Mountains using Multiple Endmember Spectral Mixture Models. Remote Sens Environ 65:267–79.

    Article  Google Scholar 

  • Roth KL, Dennison PE, Roberts DA. 2012. Comparing endmember selection techniques for accurate mapping of plant species and land cover using imaging spectrometer data. Remote Sens Environ 127:139–52.

    Article  Google Scholar 

  • Rundel PW. 1983. Impact of fire on nutrient cycles in Mediterranean-type ecosystems with reference to chaparral. In: Mediterranean-type ecosystems: the role of nutrients. Springer, Berlin, Heidelberg. pp 192–207.

    Chapter  Google Scholar 

  • Rundel PW, Parsons DJ. 1984. Post-fire uptake of nutrients by diverse ephemeral herbs in chamise chaparral. Oecologia 61:285–8.

    Article  CAS  Google Scholar 

  • Schade JD, Marti E, Welter JR, Fisher SG, Grimm NB. 2002. Sources of nitrogen to the riparian zone of a desert stream: implications for riparian vegetation and nitrogen retention. Ecosystems 5:68–79.

    Article  Google Scholar 

  • Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G. 2006. Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–90.

    Article  CAS  Google Scholar 

  • Smithwick EAH, Turner MG, Mack MC, Chapin FSIII. 2005. Postfire soil N cycling in northern conifer forests affected by severe, stand-replacing wildfires. Ecosystems 8:163–81.

    Article  CAS  Google Scholar 

  • Stock WD, Lewis OAM. 1986. Soil nitrogen and the role of fire as a mineralizing agent in a South African coastal fynbos ecosystem. J Ecol 74:317.

    Article  Google Scholar 

  • USACE. 2005. HEC-RAS river analysis system, user’s manual. U.S. Army Corps of Engineers, Hydrologic Engineering Center.

  • Verkaik I, Rieradevall M, Cooper SD, Melack JM, Dudley TL, Prat N. 2013. Fire as a disturbance in Mediterranean climate streams. Hydrobiologia 719:353–82.

    Article  CAS  Google Scholar 

  • Westerling AL, Bryant BP. 2008. Climate change and wildfire in California. Clim Change 87:231–49.

    Article  Google Scholar 

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW. 2006. Warming and earlier spring increase western U.S. forest wildfire activity. Science 313:940–3.

    Article  CAS  Google Scholar 

  • Zak DR, Groffman PM, Pregitzer KS, Christensen S, Tiedje JM, Zak DR, Groffman PM, Pregitzer KS. 1990. The vernal dam : plant-microbe competition for nitrogen in northern hardwood forests. 71:651–6.

Download references

Acknowledgements

This research was supported by the National Science Foundation’s Long-Term Ecological Research program (Grant Numbers OCE99-82105, OCE-0620276 and OCE-123277) and National Science Foundation’s RAPID program administered by the Division of Environmental Biology (Grant Number 0952599). We thank M. Meyerhof and undergraduate assistants for sample collections and laboratory analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blair M. Goodridge.

Additional information

Authors Contributions

All coauthors wrote portions of the paper; BMG, EJH, EBW, and CMD performed research; BMG, EJH, RA, EBW, and YJC analyzed data; and BMG, EJH, CMD, and JMM designed the study.

Data used in this work can be accessed at the SBC LTER Watershed Data Collection repository: http://sbc.lternet.edu//data/dataCollectionsPortal.html.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodridge, B.M., Hanan, E.J., Aguilera, R. et al. Retention of Nitrogen Following Wildfire in a Chaparral Ecosystem. Ecosystems 21, 1608–1622 (2018). https://doi.org/10.1007/s10021-018-0243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-018-0243-3

Keywords

Navigation