Skip to main content
Log in

Spatial Variation of Soil CO2, CH4 and N2O Fluxes Across Topographical Positions in Tropical Forests of the Guiana Shield

  • Published:
Ecosystems Aims and scope Submit manuscript

A Correction to this article was published on 23 July 2018

This article has been updated

Abstract

The spatial variation of soil greenhouse gas fluxes (GHG; carbon dioxide—CO2, methane—CH4 and nitrous oxide—N2O) remains poorly understood in highly complex ecosystems such as tropical forests. We used 240 individual flux measurements of these three GHGs from different soil types, at three topographical positions and in two extreme hydric conditions in the tropical forests of the Guiana Shield (French Guiana, South America) to (1) test the effect of topographical positions on GHG fluxes and (2) identify the soil characteristics driving flux variation in these nutrient-poor tropical soils. Surprisingly, none of the three GHG flux rates differed with topographical position. CO2 effluxes covaried with soil pH, soil water content (SWC), available nitrogen and total phosphorus. The CH4 fluxes were best explained by variation in SWC, with soils acting as a sink under drier conditions and as a source under wetter conditions. Unexpectedly, our study areas were generally sinks for N2O and N2O fluxes were partly explained by total phosphorus and available nitrogen concentrations. This first study describing the spatial variation of soil fluxes of the three main GHGs measured simultaneously in forests of the Guiana Shield lays the foundation for specific studies of the processes underlying the observed patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Change history

  • 23 July 2018

    This paper was published with several formatting errors. It will be republished with corrections in place.

  • 23 July 2018

    This paper was published with several formatting errors. It will be republished with corrections in place.

  • 23 July 2018

    This paper was published with several formatting errors. It will be republished with corrections in place.

References

  • Allié E, Pélissier R, Engel J, Petronelli P, Freycon V, Deblauwe V, Soucémarianadin L, Weigel J, Baraloto C. 2015. Pervasive local-scale tree-soil habitat association in a tropical forest community. PLoS ONE 10:e0141488.

    Article  CAS  Google Scholar 

  • Arias-Navarro C, Díaz-Pinés E, Klatt S, Brandt P, Rufino MC, Butterbach-Bahl K, Verchot L. 2017. Spatial variability of soil N2O and CO2 fluxes in different topographic positions in a tropical montane forest in Kenya. J Geophys Res Biogeosci 122:514–27.

    Article  CAS  Google Scholar 

  • Bai Z, Yang G, Chen H, Zhu Q, Chen D, Li Y, Wang X, Wu Z, Zhou G, Peng C. 2014. Nitrous oxide fluxes from three forest types of the tropical mountain rainforests on Hainan Island, China. Atmos Environ 92:469–77.

    Article  CAS  Google Scholar 

  • Baraloto C, Morneau F, Bonal D, Blanc L, Ferry B. 2007. Seasonal water stress tolerance and habitat associations within four neotropical tree genera. Ecology 88:478–89.

    Article  Google Scholar 

  • Bartlett KB, Harriss RC. 1993. Review and assessment of methane emissions from wetlands. Chemosphere 26:261–320.

    Article  CAS  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S. 2014. lme4: linear mixed-effects models using Eigen and S4. R Package Version 1(7):1–23.

    Google Scholar 

  • Bonal D, Bosc A, Ponton S, Goret J, Burban B, Gross P, Bonnefond J, Elbers J, Longdoz B, Epron D. 2008. Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. Glob Change Biol 14:1917–33.

    Article  Google Scholar 

  • Bongers F. 2001. Nouragues: dynamics and plant-animal interactions in a Neotropical rainforest. Berlin: Springer.

    Book  Google Scholar 

  • Bonhomme V, Picq S, Gaucherel C, Claude J. 2014. Momocs: outline analysis using R. J Stat Softw 56(13):1–24.

    Article  Google Scholar 

  • Bray RH, Kurtz LT. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–46.

    Article  CAS  Google Scholar 

  • Bréchet L, Ponton S, Alméras T, Bonal D, Epron D. 2011. Does spatial distribution of tree size account for spatial variation in soil respiration in a tropical forest? Plant Soil 347:293–303.

    Article  CAS  Google Scholar 

  • Bremner JM. 1997. Sources of nitrous oxide in soils. Nutrient Cycl Agroecosyst 49:7–16.

    Article  CAS  Google Scholar 

  • Breuer L, Papen H, Butterbach-Bahl K. 2000. N2O emission from tropical forest soils of Australia. J Geophys Res Atmos 105:26353–67.

    Article  CAS  Google Scholar 

  • Brito LDF, Marques Júnior J, Pereira GT, Souza ZM, La Scala Júnior N. 2009. Soil CO2 emission of sugarcane fields as affected by topography. Sci Agric 66:77–83.

    Article  CAS  Google Scholar 

  • Brumme R, Borken W, Finke S. 1999. Hierarchical control on nitrous oxide emission in forest ecosystems. Glob Biogeochem Cycles 13:1137–48.

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Kock M, Willibald G, Hewett B, Buhagiar S, Papen H, Kiese R. 2004. Temporal variations of fluxes of NO, NO2, N2O, CO2, and CH4 in a tropical rain forest ecosystem. Glob Biogeochem Cycles 18(3):GB3012.

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Baggs E, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc Lond Ser B 368(1621):20130122.

    Article  CAS  Google Scholar 

  • Chapuis-Lardy L, Wrage N, Metay A, Chotte J, Bernoux M. 2007. Soils, a sink for N2O? A review. Glob Change Biol 13:1–17.

    Article  Google Scholar 

  • Chen D, Li J, Lan Z, Hu S, Bai Y. 2015. Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Funct Ecol 30(4):658–69.

    Article  Google Scholar 

  • Corre M, Van Kessel C, Pennock D. 1996. Landscape and seasonal patterns of nitrous oxide emissions in a semiarid region. Soil Sci Soc Am J 60:1806–15.

    Article  CAS  Google Scholar 

  • Davidson EA, Verchot LV. 2000. Testing the hole-in-the-pipe model of nitric and nitrous oxide emissions from soils using the TRAGNET database. Glob Biogeochem Cycles 14:1035–43.

    Article  CAS  Google Scholar 

  • Davidson EA, Verchot LV, Cattanio JH, Ackerman IL, Carvalho J. 2000. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69.

    Article  CAS  Google Scholar 

  • Davidson EA, Ishida FY, Nepstad DC. 2004. Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Glob Change Biol 10:718–30.

    Article  Google Scholar 

  • Davidson EA, Nepstad DC, Ishida FY, Brando PM. 2008. Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Glob Change Biol 14:2582–90.

    Article  Google Scholar 

  • Dray S, Dufour AB. 2007. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20.

    Article  Google Scholar 

  • Dutaur L, Verchot LV. 2007. A global inventory of the soil CH4 sink. Glob Biogeochem Cycles 21:GB4013. https://doi.org/10.1029/2006GB002734.

    Article  CAS  Google Scholar 

  • Epron D, Bosc A, Bonal D, Freycon V. 2006. Spatial variation of soil respiration across a topographic gradient in a tropical rain forest in French Guiana. J Trop Ecol 22:565–74.

    Article  Google Scholar 

  • Fang Y, Gundersen P, Zhang W, Zhou G, Christiansen JR, Mo J, Dong S, Zhang T. 2009. Soil–atmosphere exchange of N2O, CO2 and CH4 along a slope of an evergreen broad-leaved forest in southern China. Plant Soil 319:37–48.

    Article  CAS  Google Scholar 

  • Ferry B, Morneau F, Bontemps J, Blanc L, Freycon V. 2010. Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest. J Ecol 98:106–16.

    Article  Google Scholar 

  • Fewster RM, Buckland ST, Siriwardena GM, Baillie SR, Wilson JD. 2000. Analysis of population trends for farmland birds using generalized additive models. Ecology 81:1970–84.

    Article  Google Scholar 

  • Geng S, Chen Z, Han S, Wang F, Zhang J. 2017. Rainfall reduction amplifies the stimulatory effect of nitrogen addition on N2O emissions from a temperate forest soil. Sci Rep 7:43329.

    Article  Google Scholar 

  • Gibbs AK, Barron CN. 1993. The geology of the Guiana Shield. Oxford: Oxford University Press.

    Google Scholar 

  • Gourlet-Fleury S, Guehl J-M, Laroussinie O. 2004. Ecology and management of a neotropical rainforest. Lessons drawn from Paracou, a long-term experimental research site in French Guiana: Elsevier.

  • Grau O, Peñuelas J, Ferry B, Freycon V, Blanc L, Desprez M, Baraloto C, Chave J, Descroix L, Dourdain A. 2017. Nutrient-cycling mechanisms other than the direct absorption from soil may control forest structure and dynamics in poor Amazonian soils. Sci Rep 7:45017.

    Article  CAS  Google Scholar 

  • Hall SJ, Asner GP, Kitayama K. 2004. Substrate, climate, and land use controls over soil N dynamics and N-oxide emissions in Borneo. Biogeochemistry 70:27–58.

    Article  CAS  Google Scholar 

  • Hammond DS. 2005. Tropical forests of the Guiana shield: ancient forests in a modern world. Wallingford: CABI.

    Book  Google Scholar 

  • Hanson P, Edwards N, Garten C, Andrews J. 2000. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–46.

    Article  CAS  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova S, Tyukavina A, Thau D, Stehman S, Goetz S, Loveland T. 2013. High-resolution global maps of 21st-century forest cover change. Science 342:850–3.

    Article  CAS  Google Scholar 

  • Hättenschwiler S, Aeschlimann B, Coûteaux M, Roy J, Bonal D. 2008. High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol 179:165–75.

    Article  CAS  Google Scholar 

  • Hink L, Nicol GW, Prosser JI. 2017. Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil. Environ Microbiol 19:4829–37.

    Article  CAS  Google Scholar 

  • Hörtnagl L, Wohlfahrt G. 2014. Methane and nitrous oxide exchange over a managed hay meadow. Biogeosci Online 11:7219.

    Article  Google Scholar 

  • Janssens IA, Barigah ST, Ceulemans R. 1998. Soil CO2 efflux rates in different tropical vegetation types in French Guiana. In: EDP sciences, Vol. 55, pp 671–80.

    Article  Google Scholar 

  • Janssens I, Lankreijer H, Matteucci G, Kowalski A, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grünwald T. 2001. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob Change Biol 7:269–78.

    Article  Google Scholar 

  • Jones CM, Spor A, Brennan FP, Breuil M-C, Bru D, Lemanceau P, Griffiths B, Hallin S, Philippot L. 2014. Recently identified microbial guild mediates soil N2O sink capacity. Nat Clim Change 4:801–5.

    Article  CAS  Google Scholar 

  • Keller M, Reiners WA. 1994. Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Glob Biogeochem Cycles 8:399–409.

    Article  CAS  Google Scholar 

  • Keller M, Varner R, Dias JD, Silva H, Crill P, de Oliveira Jr RC, Asner GP. 2005. Soil–atmosphere exchange of nitrous oxide, nitric oxide, methane, and carbon dioxide in logged and undisturbed forest in the Tapajos National Forest, Brazil. Earth Interact 9:1–28.

    Article  Google Scholar 

  • Kuhn M. 2008. Caret package. J Stat Softw 28:1–26.

    Article  Google Scholar 

  • Liptzin D, Silver WL, Detto M. 2011. Temporal dynamics in soil oxygen and greenhouse gases in two humid tropical forests. Ecosystems 14:171–82.

    Article  CAS  Google Scholar 

  • Luizao RC, Luizao FJ, Paiva RQ, Monteiro TF, Sousa LS, Kruijt B. 2004. Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Glob Change Biol 10:592–600.

    Article  Google Scholar 

  • Luo G, Kiese R, Wolf B, Butterbach-Bahl K. 2013. Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types. Biogeosciences 10:3205–19.

    Article  CAS  Google Scholar 

  • Martin JG, Bolstad PV. 2009. Variation of soil respiration at three spatial scales: components within measurements, intra-site variation and patterns on the landscape. Soil Biol Biochem 41:530–43.

    Article  CAS  Google Scholar 

  • Meir P, Wood TE, Galbraith DR, Brando PM, Da Costa AC, Rowland L, Ferreira LV. 2015. Threshold responses to soil moisture deficit by trees and soil in tropical rain forests: insights from field experiments. BioScience 65:882–92.

    Article  Google Scholar 

  • Merbold L, Steinlin C, Hagedorn F. 2013. Winter greenhouse gas fluxes (CO2, CH4 and N2O) from a subalpine grassland. Biogeosciences 10:3185–203.

    Article  CAS  Google Scholar 

  • Merbold L, Wohlfahrt G, Butterbach-Bahl K, Pilegaard K, DelSontro T, Stoy P, Zona D. 2015. Preface: towards a full greenhouse gas balance of the biosphere. Biogeosciences 12:453–6.

    Article  Google Scholar 

  • Morley N, Baggs EM. 2010. Carbon and oxygen controls on N2O and N2 production during nitrate reduction. Soil Biol Biochem 42:1864–71.

    Article  CAS  Google Scholar 

  • Morley N, Baggs EM, Dörsch P, Bakken L. 2008. Production of NO, N2O and N2 by extracted soil bacteria, regulation by NO2 − and O2 concentrations. FEMS Microbiol Ecol 65:102–12.

    Article  CAS  Google Scholar 

  • Nachtergaele FO, Spaargaren O, Deckers JA, Ahrens B. 2000. New developments in soil classification: world reference base for soil resources. Geoderma 96:345–57.

    Article  Google Scholar 

  • Nobre A, Keller M, Crill P, Harriss R. 2001. Short-term nitrous oxide profile dynamics and emissions response to water, nitrogen and carbon additions in two tropical soils. Biol Fertil Soils 34:363–73.

    Article  CAS  Google Scholar 

  • Parkin TB, Venterea RT, Hargreaves SK. 2012. Calculating the detection limits of chamber-based soil greenhouse gas flux measurements. J Environ Qual 41:705–15.

    Article  CAS  Google Scholar 

  • Pedersen AR, Petersen SO, Schelde K. 2010. A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. Eur J Soil Sci 61(6):888–902.

    Article  Google Scholar 

  • Peichl M, Arain A, Moore T, Brodeur J, Khomik M, Ullah S, Restrepo-Coupé N, McLaren J, Pejam M. 2014. Carbon and greenhouse gas balances in an age sequence of temperate pine plantations. Biogeosciences 11:5399–410.

    Article  Google Scholar 

  • Pennock D, Van Kessel C, Farrell R, Sutherland R. 1992. Landscape-scale variations in denitrification. Soil Sci Soc Am J 56:770–6.

    Article  Google Scholar 

  • Penuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J. 2013. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun 4:2934.

    Article  CAS  Google Scholar 

  • Petitjean C, Hénault C, Perrin A-S, Pontet C, Metay A, Bernoux M, Jehanno T, Viard A, Roggy J-C. 2015. Soil N2O emissions in French Guiana after the conversion of tropical forest to agriculture with the chop-and-mulch method. Agric Ecosyst Environ 208:64–74.

    Article  CAS  Google Scholar 

  • Prosser JI, Nicol GW. 2008. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–41.

    Article  CAS  Google Scholar 

  • Reiners WA, Keller M, Gerow KG. 1998. Estimating rainy season nitrous oxide and methane fluxes across forest and pasture landscapes in Costa Rica. Water Air Soil Pollut 105:117–30.

    Article  CAS  Google Scholar 

  • Rees RM, Wuta M, Furley PA, Li C. 2006. Nitrous oxide fluxes from savanna(miombo) woodlands in Zimbabwe. J Biogeogr 33:424–37.

    Article  Google Scholar 

  • Reth S, Reichstein M, Falge E. 2005. The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux—a modified model. Plant Soil 268:21–33.

    Article  CAS  Google Scholar 

  • Riveros-Iregui DA, McGlynn BL. 2009. Landscape structure control on soil CO2 efflux variability in complex terrain: Scaling from point observations to watershed scale fluxes. J Geophys Res Biogeosci 114:G2.

    Article  CAS  Google Scholar 

  • Rowland L, Hill TC, Stahl C, Siebicke L, Burban B, Zaragoza-Castells J, Ponton S, Bonal D, Meir P, Williams M. 2014. Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest. Glob Change Biol 20:979–91.

    Article  Google Scholar 

  • Rowlings D, Grace P, Kiese R, Weier K. 2012. Environmental factors controlling temporal and spatial variability in the soil-atmosphere exchange of CO2, CH4 and N2O from an Australian subtropical rainforest. Glob Change Biol 18:726–38.

    Article  Google Scholar 

  • Sabatier D, Grimaldi M, Prévost M-F, Guillaume J, Godron M, Dosso M, Curmi P. 1997. The influence of soil cover organization on the floristic and structural heterogeneity of a Guianan rain forest. Plant Ecol 131:81–108.

    Article  Google Scholar 

  • Schlesinger WH. 2013. An estimate of the global sink for nitrous oxide in soils. Glob Change Biol 19:2929–31.

    Article  Google Scholar 

  • Schmidt I, van Spanning RJM, Jetten MSM. 2004. Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants. Microbiology 150:4107–14.

    Article  CAS  Google Scholar 

  • Silver WL, Lugo A, Keller M. 1999. Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44:301–28.

    Google Scholar 

  • Smith K, Ball T, Conen F, Dobbie K, Massheder J, Rey A. 2003. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–91.

    Article  Google Scholar 

  • Stahl C, Burban B, Goret J-Y, Bonal D. 2011. Seasonal variations in stem CO2 efflux in the Neotropical rainforest of French Guiana. Ann For Sci 68:771–82.

    Article  Google Scholar 

  • Tang X, Liu S, Zhou G, Zhang D, Zhou C. 2006. Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Glob Change Biol 12:546–60.

    Article  Google Scholar 

  • Teh YA, Silver WL. 2006. Effects of soil structure destruction on methane production and carbon partitioning between methanogenic pathways in tropical rain forest soils. J Geophys Res Biogeosci 111:G1.

    Google Scholar 

  • Teh YA, Silver WL, Conrad ME. 2005. Oxygen effects on methane production and oxidation in humid tropical forest soils. Glob Change Biol 11:1283–97.

    Article  Google Scholar 

  • Teh YA, Dubinsky EA, Silver WL, Carlson CM. 2008. Suppression of methanogenesis by dissimilatory Fe(III)-reducing bacteria in tropical rain forest soils: implications for ecosystem methane flux. Glob Change Biol 14:413–22.

    Article  Google Scholar 

  • Teh Y, Diem T, Jones S, Huaraca Quispe L, Baggs E, Morley N, Richards M, Smith P, Meir P. 2013. Methane and nitrous oxide fluxes from the tropical Andes. Biogeosci Discuss 10:17397–438.

    Article  Google Scholar 

  • Teh Y, Diem T, Jones S, Huaraca Quispe LP, Baggs E, Morley N, Richards M, Smith P, Meir P. 2014. Methane and nitrous oxide fluxes across an elevation gradient in the tropical Peruvian Andes. Biogeosciences 11:2325–39.

    Article  CAS  Google Scholar 

  • Tian D, Niu S. 2015. A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett 10:024019.

    Article  CAS  Google Scholar 

  • Townsend AR, Asner GP, Cleveland CC. 2008. The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23:424–31.

    Article  Google Scholar 

  • van der Meer PJ, Bongers F. 1996. Patterns of tree-fall and branch-fall in a tropical rain forest in French Guiana. J Ecol 84(1):19–29.

    Article  Google Scholar 

  • van Lent J, Hergoualc’h K, Verchot L. 2015. Reviews and syntheses: soil N2O and NO emissions from land use and land use change in the tropics and subtropics: a meta-analysis. Biogeosciences 12:7299–313.

    Article  Google Scholar 

  • Veldkamp E, Koehler B, Corre M. 2013. Indications of nitrogen-limited methane uptake in tropical forest soils. Biogeosciences 10:5367–79.

    Article  CAS  Google Scholar 

  • Von Fischer JC, Hedin LO. 2002. Separating methane production and consumption with a field-based isotope pool dilution technique. Glob Biogeochem Cycles 16(3):8-1–8-13. https://doi.org/10.1029/2001GB001448.

    Article  CAS  Google Scholar 

  • Von Fischer JC, Hedin LO. 2007. Controls on soil methane fluxes: tests of biophysical mechanisms using stable isotope tracers. Glob Biogeochem Cycles. https://doi.org/10.1029/2006GB002687.

    Article  Google Scholar 

  • Werner C, Zheng X, Tang J, Xie B, Liu C, Kiese R, Butterbach-Bahl K. 2006. N2O, CH4 and CO2 emissions from seasonal tropical rainforests and a rubber plantation in Southwest China. Plant Soil 289:335–53.

    Article  CAS  Google Scholar 

  • Weslien P, Kasimir Klemedtsson Å, Börjesson G, Klemedtsson L. 2009. Strong pH influence on N2O and CH4 fluxes from forested organic soils. Eur J Soil Sci 60:311–20.

    Article  CAS  Google Scholar 

  • Wolf K, Flessa H, Veldkamp E. 2012. Atmospheric methane uptake by tropical montane forest soils and the contribution of organic layers. Biogeochemistry 111:469–83.

    Article  CAS  Google Scholar 

  • Wood S, Wood MS. 2007. The mgcv package. www R-Proj Org.

  • Yan J, Zhang W, Wang K, Qin F, Wang W, Dai H, Li P. 2014. Responses of CO2, N2O and CH4 fluxes between atmosphere and forest soil to changes in multiple environmental conditions. Glob Change Biol 20(1):300–12.

    Article  Google Scholar 

  • Yang H, Detto M, Liu S, Yuan W, Hsieh C-I, Wang X, Chen R, Chen H, Peng C, Jiang X, Li Y, Xu H, Liu W, Yang Q. 2017. Effects of canopy gaps on N2O fluxes in a tropical montane rainforest in Hainan of China. Ecol Eng 105:325–34.

    Article  Google Scholar 

  • Zona D, Janssens IA, Aubinet M, Gioli B, Vicca S, Fichot R, Ceulemans R. 2013. Fluxes of the greenhouse gases (CO2, CH4 and N2O) above a short-rotation poplar plantation after conversion from agricultural land. Agric For Meteorol 169:100–10.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the European Research Council Synergy grant ERC-2013-SyG 610028-IMBALANCE-P. We thank the staff of the Nouragues station, managed by USR mixte LEEISA (CNRS; Cayenne), and the Paracou station, managed by UMR Ecofog (CIRAD, INRA; Kourou). Both research stations received support from “Investissement d’Avenir” grants managed by Agence Nationale de la Recherche (CEBA: ANR-10-LABX-25-01, ANAEE-France: ANR-11-INBS-0001). We thank the subject-matter editor Dr Butterbach-Bahl, Dr Teh and one anonymous reviewer for their comments on previous versions of this manuscript. We thank Nicola Arriga, Jan Segers and Fred Kockelbergh for building the chambers and for advice on the field measurements. We are grateful to Stanislas Talaga, Jérôme Levy-Valensky and Jean-Pierre Robert for their help in the field, to Oriol Grau and Vincent Freycon for the identification and characterization of each topographical position and to Margarethe Watzka for the gas analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elodie A. Courtois.

Additional information

The original version of this article was revised.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ps 358 kb)

Supplementary material 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Courtois, E.A., Stahl, C., Van den Berge, J. et al. Spatial Variation of Soil CO2, CH4 and N2O Fluxes Across Topographical Positions in Tropical Forests of the Guiana Shield. Ecosystems 21, 1445–1458 (2018). https://doi.org/10.1007/s10021-018-0232-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-018-0232-6

Keywords

Navigation