Skip to main content
Log in

Abundance and Impact on Soil Properties of Cathedral and Lenticular Termite Mounds in Southern Indian Woodlands

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Despite the acknowledged roles of termites in tropical ecosystems, the majority of published studies of epigeal mounds still address the African fauna and are principally concerned with spatial patterns and putative inter-colony competition, rather than the links between parent soil properties and mound establishment. Further, information about the effects of habitat disturbance, and especially fragmentation, is lacking. This study assessed the abundance and distribution of the cathedral- and lenticular-type aboveground mounds of fungus-growing termites (Macrotermitinae), which are a common feature of South Indian woodlands, in relation to soil properties (vertisol vs. ferralsol) and habitat fragmentation (forest vs. highway margins). Mound abundance averaged 3.5 (standard error, SE 0.8) ha−1 (cathedral) and 12.9 (SE 2.1) ha−1 (lenticular), but was not influenced either by soil properties or disturbance. However, the volume of soil stored in the mounds varied between 27 (SE 8) m3 ha−1 (ferralsol) and 47 (SE 6) m3 ha−1 (vertisol). At the watershed scale, such volumes are equivalent to a 3.1-mm layer of soil if spread evenly across the landscape, roughly the same as the estimated erosion over the life of a typical mound. Significantly more nutrients were stored in lenticular mounds, especially on the vertisol, but the significance of these at the ecosystem level was considered small. In conclusion, this study suggests that termite mounds, and especially lenticular mounds, have a significant impact on soil dynamics at the watershed scale but a limited impact on the distribution of C and nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

REFERENCES

  • Abbadie L, Lepage M. 1989. The role of subterranean fungus-comb chambers (Isoptera, Macrotermitinae) in soil nitrogen cycling in a preforest savanna (Côte d’Ivoire). Soil Biol Biochem 21:1067–71.

    Article  CAS  Google Scholar 

  • Abe SS, Watanabe Y, Onishi T, Kotegawa T, Wakatsuri T. 2011. Nutrient storage in termite (Macrotermes bellicosus) mounds and the implications for nutrient dynamics in a tropical savanna Ultisol. Soil Sci Plant Nutr 57:786–95.

    Article  CAS  Google Scholar 

  • Arveti N, Reginald S, Kumar KS, Harinath V, Sreedhar Y. 2012. Biogeochemical study of termite mounds: a case study from Tummalapalle area of Andhra Pradesh, India. Environ Monit Assess 184:2295–306.

    Article  CAS  PubMed  Google Scholar 

  • Attignon SE, Lachat T, Sinsin B, Nagel P, Peveling R. 2005. termite assemblage in a West-African semi-deciduous forest and teak plantations. Agric Ecosyst Environ 110:318–26.

    Article  Google Scholar 

  • Aufreiter S, Mahaney WC, Milner MW, Huffman MA, Hancock RGV, Wink M, Reich M. 2001. Mineralogical and chemical interactions of soils eaten by chimpanzees of the Mahale Mountains and Gombe Stream National Parks, Tanzania. J Chem Ecol 27:285–311.

    Article  CAS  PubMed  Google Scholar 

  • Baddeley A, Rubak E, Turner R. 2015. Spatial point patterns: methodology and applications with R. London: CRC Press.

    Google Scholar 

  • Barbiero L, Parate HR, Descloitres M, Bost A, Furian S, Kumar MSM, Kumar C, Braun JJ. 2007. Using a structural approach to identify relationships between soil and erosion in a semi-humid forested area, South India. Catena 70:313–29.

    Article  Google Scholar 

  • Barot S, Gignoux J, Menaut JC. 1999. Demography of a savanna palm tree: predictions from comprehensive spatial pattern analyses. Ecology 80:1987–2005.

    Article  Google Scholar 

  • Basu P, Blanchart E, Lepage M. 1996. Termite (Isoptera) community in the Western Ghats, South India: influence of anthropogenic disturbance of natural vegetation. Eur J Soil Biol 32:113–21.

    Google Scholar 

  • Black HIJ, Okwakol MJN. 1997. Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of termites. Appl Soil Ecol 6:37–53.

    Article  Google Scholar 

  • Bonachela JA, Pringle RM, Sheffer E, Coverdale TC, Guyton JA, Caylor KK, Levin SA, Tarnita CE. 2015. Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science 347:651–5.

    Article  CAS  PubMed  Google Scholar 

  • Braun JJ, Descloitres M, Riotte J, Deschamps P, Violette A, Marechal JC, Sekhar M, Kumar MSM, Subramanian S. 2009. Contemporary versus long-term weathering rates in tropics: mule hole, South India. Geochim Cosmochim Acta 73:A157.

    Article  Google Scholar 

  • Brossard M, Lopez-Hernandez D, Lepage M, Leprun J-C. 2007. Nutrient storage in soils and nests of mound-building Trinervitermes termites in Central Burkina Faso: consequences for soil fertility. Bio Fertil Soils 43:437–47.

    Article  CAS  Google Scholar 

  • Chhotani OB, Bose G. 1979. Nesting behaviour and nests of Indian termites. Zoologiana 2:16–28.

    Google Scholar 

  • Choosai C, Mathieu J, Hanboonsong Y, Jouquet P. 2009. Termite mounds and dykes are biodiversity refuges in paddy fields in north-eastern Thailand. Environ Conserv 36:71–9.

    Article  Google Scholar 

  • Collins NM. 1979. Nests of Macrotermes bellicosus (Smeathman) from Mokwa, Nigeria. Insectes Sociaux 26:240–6.

    Article  Google Scholar 

  • Collins NM. 1981. Populations, age structure and survivorship of colonies of Macrotermes bellicosus (Isoptera, Macrotermitinae). J Anim Ecol 50:293–311.

    Article  Google Scholar 

  • Cramer MD, Midgley JJ. 2015. The distribution and spatial patterning of mima-like mounds in South Africa suggests genesis through vegetation induced aeolian sediment deposition. J Arid Environ 119:16–26.

    Article  Google Scholar 

  • Crist TO. 1998. The spatial distribution of termites in shortgrass steppe: a geostatistical approach. Oecologia 114:410–16.

    Article  PubMed  Google Scholar 

  • Dambros CD, da Silva VNV, Azevedo R, de Morais JW. 2013. Road-associated edge effects in Amazonia change termite community composition by modifying environmental conditions. J Nat Conserv 21:279–85.

    Article  Google Scholar 

  • Darlington J. 1985. Lenticular soil mounds in the Kenya highlands. Oecologia 66:116–21.

    Article  PubMed  Google Scholar 

  • Davies RG, Eggleton P, Jones DT, Gathorne-Hardy FJ, Hernandez LM. 2003. Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J Biogeogr 30:847–77.

    Article  Google Scholar 

  • Davies AB, Levick SR, Asner GP, Robertson MP, van Rensburg BJ, Parr CL. 2014. Spatial variability and abiotic determinants of termite mounds throughout a savanna catchment. Ecography 37:852–62.

    Article  Google Scholar 

  • Desouza O, Brown VK. 1994. Effects of habitat fragmentation on Amazonian termites communities. J Trop Ecol 10:197–206.

    Article  Google Scholar 

  • Diggle PJ. 1983. Statistical analysis of the spatial point patterns. London (UK): Academic Press.

    Google Scholar 

  • Dosso K, Yeo K, Konate S, Linsenmair KE. 2012. Importance of protected areas for biodiversity conservation in central Cote d’Ivoire: comparison of termite assemblages between two neighboring areas under differing levels of disturbance. J Insect Sci 12(1):131.

    PubMed  PubMed Central  Google Scholar 

  • Eggleton P, Williams P, Gaston K. 1994. Explaining global termite diversity: productivity or history? Biodivers Conserv 3:318–30.

    Article  Google Scholar 

  • Eggleton P, Homathevi R, Jeeva D, Jones DT, Davies RG, Maryati M. 1997. The species richness and composition of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sagah, East Malaysia. Ecotropica 3:119–28.

    Google Scholar 

  • Erens H, Mujinya BB, Mees F, Baert G, Boeckx P, Malaisse F, Van Ranst E. 2015a. The origin and implications of variations in soil-related properties within Macrotermes falciger mounds. Geoderma 249–250:40–50.

    Article  Google Scholar 

  • Erens H, Boudin M, Mees F, Mujinya BB, Baert G, Van Strydonck M, Boeckx P, Van Ranst E. 2015b. The age of large termite mounds—radiocarbon dating of Macrotermes falciger mounds of the Miombo woodland of Katanga, DR Congo. Palaeogeogr Palaeoclimatol Palaeoecol 435:265–71.

    Article  Google Scholar 

  • Gathorne-Hardy FJ, Jones DT, Syaukani. 2002. A regional perspective on the effects of human disturbance on the termites of Sundaland. Biodivers Conserv 11:1991–2006.

    Article  Google Scholar 

  • Grohmann C, Oldeland J, Stoyan D, Linsenmair KE. 2010. Multi-scale pattern analysis of a mound-building termite species. Insectes Sociaux 57:477–86.

    Article  Google Scholar 

  • Holdo RM, McDowell LR. 2004. Termite mounds as nutrient-rich food patches for elephants. Biotropica 36:231–9.

    Google Scholar 

  • Josens G, Dosso K, Konaté S. 2016. Lenticular mounds in the African savannahs can originate from ancient Macrotermes mounds. Insectes Sociaux 63:373–9.

    Article  Google Scholar 

  • Jouquet P, Mery T, Rouland C, Lepage M. 2003. Modulated effect of the termite Ancistrotermes cavithorax (Isoptera, Macrotermitinae) on soil properties according to the internal mound structures. Sociobiology 42:403–12.

    Google Scholar 

  • Jouquet P, Boulain N, Gignoux J, Lepage M. 2004. Association between subterranean termites and grasses in a West African savanna: spatial pattern analysis shows a significant role for Odontotermes n. pauperans. Appl Soil Ecol 27:99–107.

    Article  Google Scholar 

  • Jouquet P, Traore S, Choosai C, Hartmann C, Bignell D. 2011. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur J Soil Biol 47:215–22.

    Article  Google Scholar 

  • Jouquet P, Guilleux N, Shanbhag RR, Subramanian S. 2015. Influence of soil type on the properties of termite mound nests in Southern India. Appl Soil Ecol 96:282–7.

    Article  Google Scholar 

  • Jouquet P, Guilleux N, Caner L, Chintakunta S, Ameline M, Shanbhag RR. 2016. Influence of soil pedological properties on termite mound stability. Geoderma 262:45–51.

    Article  CAS  Google Scholar 

  • Koerselman W, Arthur FMM. 1996. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–50.

    Article  Google Scholar 

  • Konaté S, Le Roux X, Tessier D, Lepage M. 1999. Influence of large termitaria on soil characteristics, soil water regime, and tree leaf shedding pattern in a West African savanna. Plant Soil 206:47–60.

    Article  Google Scholar 

  • Korb J, Linsenmair KE. 1998. The effects of temperature on the architecture and distribution of Macrotermes bellicosus (Isoptera, Macrotermitinae) mounds in different habitats of a West African Guinea savanna. Insectes sociaux 45:51–65.

    Article  Google Scholar 

  • Korb J, Linsenmair KE. 2001a. The causes of spatial patterning of mounds of a fungus-cultivating termite: results from nearest-neighbour analysis and ecological studies. Oecologia 127:324–33.

    Article  Google Scholar 

  • Korb J, Linsenmair KE. 2001b. Resource availability and distribution patterns, indicators of competition between Macrotermes bellicosus and other macro-detritivores in the Comoe National Park, Cote d’Ivoire. Afr J Ecol 39:257–65.

    Article  Google Scholar 

  • Lavelle P, Bignell D, Lepage M. 1997. Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–93.

    CAS  Google Scholar 

  • Lepage M. 1974. Les termites d’une savane sahélienne, Ferlo septentrional, Sénégal: peuplement, populations, consommation, rôle dans l’écosystème. Doctoral Thesis, Université de Dijon, France.

  • Lepage M. 1984. Distribution, density and evolution of Macrotermes bellicosus nests (Isoptera, Macrotermitinae) in the northeast of Ivory-Coast. J Anim Ecol 53:107–17.

    Article  Google Scholar 

  • Levick SR, Asner GP, Chadwick OA, Khomo LM, Rogers KH, Hartshorn AS, Kennedy-Bowdoin T, Knapp DE. 2010. Regional insight into savanna hydrogeomorphology from termite mounds. Nat Commun 1:65.

    Article  PubMed  Google Scholar 

  • Menichetti L, Landi L, Nannipieri P, Katterer T, Kirchmann H, Renella G. 2014. Chemical properties and biochemical activity of colonized and abandoned litter-feeding termite (Macrotermes spp.) mounds in chromic Cambisol area on the Borana plateau, Ethiopia. Pedosphere 24:399–407.

    Article  CAS  Google Scholar 

  • Meyer VW, Braack LEO, Biggs HC, Ebersohn C. 1999. Distribution and density of termite mounds in the northern Kruger National Park, with specific reference to those constructed by Macrotermes Holmgren (Isoptera: termitidae). Afr Entomol 7:123–30.

    Google Scholar 

  • Miyagawa S, Koyama Y, Kokubo M, Matsushita Y, Adachi Y, Sivilay S, Kawakubo N, Oba S. 2011. Indigenous utilization of termite mounds and their sustainability in a rice growing village of the central plain of Laos. J Ethnobiol Ethnomed 7:24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moe SR, Mobaek R, Narmo AK. 2009. Mound building termites contribute to savanna vegetation heterogeneity. Plant Ecol 202:31–40.

    Article  Google Scholar 

  • Mujinya BB, Adam M, Mees F, Bogaert J, Vranken I, Erens H, Baert G, Ngongo M, Van Ranst E. 2014. Spatial patterns and morphology of termite (Macrotermes falciger) mounds in the Upper Katanga, D.R. Congo. Catena 114:97–106.

    Article  CAS  Google Scholar 

  • Muvengwi J, Mbiba M, Nyenda T. 2013. Termite mounds may not be foraging hotspots for mega-herbivores in a nutrient-rich matrix. J Trop Ecol 29:551–8.

    Article  Google Scholar 

  • Pansu M, Gautheeyrou J, Loyer JY. 1998. L’analyse du sol. Echantillonnage, instrumentation et contrôle. Paris: Masson.

    Google Scholar 

  • Pequeno P, Franklin E, Venticinque EM, Acioli ANS. 2015. Linking functional trade-offs, population limitation and size structure: termites under soil heterogeneity. Basic Appl Ecol 16:365–74.

    Article  Google Scholar 

  • Pomeroy DE. 1977. The distribution and abundance of large termite mounds in Uganda. J Appl Ecol 14:465–75.

    Article  Google Scholar 

  • Pringle RM, Doak DF, Brody AK, Jocque R, Palmer TM. 2010. Spatial pattern enhances ecosystem functioning in an African savanna. PloS Biol 8:e1000377.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramesh T, Kalle R, Sankar K, Qureshi Q. 2012. Factors affecting habitat patch use by sloth bears in Mudumalai Tiger Reserve, Western Ghats, India. Ursus 23:78–85.

    Article  Google Scholar 

  • Reynolds V, Lloyd AW, English CJ, Lyons P, Dodd H, Hobaiter C, Newton-Fisher N, Mullins C, Lamon N, Schel AM, Fallon B. 2015. Mineral acquisition from clay by Budongo Forest chimpanzees. PLOS ONE 10:14.

    Google Scholar 

  • Riotte J, Maréchal JC, Audry S, Kumar C, Bedimo JB, Ruiz L, Sekhar M, Cisel M, Tarak RC, Varma MR, Lagane C, Reddy P, Braun JJ. 2014. Vegetation impact on stream chemical fluxes: mule Hole watershed (South India). Geochim Cosmochim Acta 145:116–38.

    Article  CAS  Google Scholar 

  • Ripley BD. 1981. Spatial Statistics. New York: Wiley.

    Book  Google Scholar 

  • Roisin Y, Leponce M. 2004. Characterizing termite assemblages in fragmented forests: a test case in the Argentinian Chaco. Aust Ecol 29:637–46.

    Article  Google Scholar 

  • Salick J, Herrera R, Jordan CF. 1983. Termitaria: nutrient patchiness in nutrient-deficient rain forests. Biotropica 15:1–7.

    Article  Google Scholar 

  • Schuurman G, Dangerfield JM. 1997. Dispersion and abundance of Macrotermes michaelseni colonies: a limited role for intraspecific competition. J Trop Ecol 13:39–49.

    Article  Google Scholar 

  • Seymour CL, Milewski AV, Mills AJ, Joseph GS, Cumming GS, Cumming DHM, Mahlangu Z. 2014. Do the large termite mounds of Macrotermes concentrate micronutrients in addition to macronutrients in nutrient-poor African savannas? Soil Biol Biochem 68:95–105.

    Article  CAS  Google Scholar 

  • Sileshi GW, Arshad MA, Konaté S, Nkunika POY. 2010. Termite-induced heterogeneity in African savanna vegetation: mechanisms and patterns. J Veg Sci 21:923–37.

    Article  Google Scholar 

  • Traore S, Tigabu M, Ouedraogo SJ, Boussim JI, Guinko S, Lepage M. 2008. Macrotermes mounds as sites for tree regeneration in a Sudanian woodland (Burkina Faso). Plant Ecol 198:285–95.

    Article  Google Scholar 

  • Traore S, Tigabu M, Jouquet P, Ouedraogo SJ, Guinko S, Lepage M. 2015. Long-term effects of Macrotermes termites, herbivores and annual early fire on woody undergrowth community in Sudanian woodland, Burkina Faso. Flora 211:40–50.

    Article  Google Scholar 

  • Van der Plas F, Howison R, Reinders J, Fokkema W, Olff H. 2013. Functional traits of trees on and off termite mounds: understanding the origin of biotically-driven heterogeneity in savannas. J Veg Sci 24:227–38.

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This project was supported by the French National Program EC2CO-Biohefect “MACROFLUX” and the Indo-French Cell for Water Sciences (LMI IFCWS/CEFIRSE, http://www.cefirse.ird.fr) from the French Institute of Research for Development (IRD). Data were partially obtained from the ALYSES facility (IRD-UPMC) that was supported by grants from Région Ile-de-France. The Mule Hole basin is part of the ORE-BVET project (Observatoire de Recherche en Environnement - Bassin Versant Expérimentaux Tropicaux, http://bvet.omp.obs-mip.fr/index. php/eng/) supported by IRD, CNRS, and Toulouse University. The project also benefited from funding from the Réseau des Bassins Versants (RBV, http://rnbv.ipgp.fr/). We would like to thank Michèle Bouchez and Johana Azzi for their help and the Karnataka Forest Department and the staff of the Bandipur National Park for all the facilities and support they provided, and two anonymous reviewers for valuable comments that permitted to clarify and improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Jouquet.

Additional information

Author contributions

Pascal Jouquet and Jean Riotte conceived the study; Etienne Airola, Nabila Guilleux, Ajay Harit, Ekta Chaudhary, Jean Riotte, and Pascal Jouquet performed research; Pascal Jouquet, Etienne Airola, and Séraphine Grellier analyzed data; Pascal Jouquet and Jean Riotte have contributed new methods or models; Pascal Jouquet and Jean Riotte have written the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jouquet, P., Airola, E., Guilleux, N. et al. Abundance and Impact on Soil Properties of Cathedral and Lenticular Termite Mounds in Southern Indian Woodlands. Ecosystems 20, 769–780 (2017). https://doi.org/10.1007/s10021-016-0060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-016-0060-5

Keywords

Navigation