Skip to main content
Log in

Molecular subgrouping of ependymoma across three anatomic sites and their prognostic implications

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

The 2021 WHO classification stratifies ependymoma (EPN) into nine molecular subgroups according to the anatomic locations which outperforms histological grading. We aimed at molecularly reclassifying 200 EPN using immunohistochemistry (IHC) and sequencing for ZFTA fusions in supratentorial (ST) EPN. Further, we assessed the utility of L1CAM, cyclinD1, and p65 markers in identifying ZFTA fusion. Demographic profiles, histologic features, molecular subgroups and clinical outcome were retrospectively analyzed. IHC for L1CAM, cyclinD1, p65, H3K27me3, and H3K27M and sequencing for ZFTA fusion were performed. ZFTA fusions were identified in 44.8% ST EPN. p65 displayed the highest specificity (93.8%), while L1CAM had the highest sensitivity (92.3%) in detecting ZFTA fusions. The negative predictive value approached 96.6% and sensitivity improved to 96.2% with combinatorial IHC (L1CAM, cyclinD1, p65). H3K27me3 loss (PF-A) was noted in 65% PF EPN. Our results provide evidence that a combination of two of three (L1CAM, p65, and cyclinD1) can be used as surrogate markers for predicting fusion. ZFTA fusion, and its surrogate markers in ST, and H3K27me3 and younger age (< 5 years) in PF showed significant correlation with PFS and OS on univariate and Kaplan–Meier analysis. On multivariate analysis, H3K27me3 loss and younger age group are associated with poor clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ellison DW, McLendon R, Wiestler OD et al (2016) Ependymal tumors. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Ellison DW, Figarella-Branger D, Perry A, Reifenberger G, von Deimling A (eds) WHO classification of tumours of the central nervous system, 4th edn. International Agency for Research on Cancer, Lyon, pp 101–114

    Google Scholar 

  2. McGuire CS, Sainani KL, Fisher PG (2009) Incidence patterns for ependymoma: a surveillance, epidemiology, and end results study. J Neurosurg 110:725–729

    Article  Google Scholar 

  3. Ellison DW, Kocak M, Figarella-Branger D et al (2011) Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed 10:7

    Article  Google Scholar 

  4. Tihan T, Zhou T, Holmes E et al (2008) The prognostic value of histological grading of posterior fossa ependymomas in children: a Children’s Oncology Group study and a review of prognostic factors. Mod Pathol 21:165–177

    Article  Google Scholar 

  5. Gupta K, Salunke P (2017) Understanding ependymoma oncogenesis: an update on recent molecular advances and current perspectives. Mol Neurobiol 54(1):15–21

    Article  CAS  Google Scholar 

  6. Pajtler KW, Witt H, Sill M et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27(5):728–743

    Article  CAS  Google Scholar 

  7. Ellison DW (2022) Ependymoma. In: WHO classification of tumours editorial board. World Health Organization classification of tumours of the central nervous system. 5th edn. International Agency for Research on Cancer press, Lyon, pp 159–176

  8. Parker M, Mohankumar KM, Punchihewa C et al (2014) C11orf95-RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 506(7489):451–455

    Article  CAS  Google Scholar 

  9. Pietsch T, Wohlers I, Goschzik T et al (2014) Supratentorial ependymomas of childhood carry C11orf95-RELA fusions leading to pathological activation of the NF-κB signaling pathway. Acta Neuropathol 127(4):609–611

    Article  Google Scholar 

  10. Ellison DW, Aldape KD, Capper D et al (2020) cIMPACT-NOW update 7: advancing the molecular classification of ependymal tumors. Brain Pathol 30(5):863–866

    PubMed  PubMed Central  Google Scholar 

  11. Andreiuolo F, Varlet P, Tauziède-Espariat A et al (2019) Childhood supratentorial ependymomas with YAP1-MAMLD1 fusion: an entity with characteristic clinical, radiological, cytogenetic and histopathological features. Brain Pathol 29(2):205–216

    Article  CAS  Google Scholar 

  12. Torre M, Alexandrescu S, Dubuc AM et al (2020) Characterization of molecular signatures of supratentorial ependymomas. Mod Pathol 33(1):47–56

    Article  CAS  Google Scholar 

  13. Malgulwar PB, Nambirajan A, Pathak P et al (2018) C11orf95-RELA fusions and upregulated NF-KB signalling characterise a subset of aggressive supratentorial ependymomas that express L1CAM and nestin. J Neurooncol 138(1):29–39

    Article  CAS  Google Scholar 

  14. Gessi M, Giagnacovo M, Modena P et al (2019) Role of immunohistochemistry in the identification of supratentorial C11ORF95-RELA fused ependymoma in routine neuropathology. Am J Surg Pathol 43(1):56–63

    Article  Google Scholar 

  15. Sasaki A, Hirato J, Hirose T et al (2019) Review of ependymomas: assessment of consensus in pathological diagnosis and correlations with genetic profiles and outcome. Brain Tumor Pathol 36(2):92–101

    Article  Google Scholar 

  16. Pagès M, Pajtler KW, Puget S et al (2019) Diagnostics of pediatric supratentorial RELA ependymomas: integration of information from histopathology, genetics, DNA methylation and imaging. Brain Pathol 29(3):325–335

    Article  Google Scholar 

  17. Merchant TE, Bendel AE, Sabin ND et al (2019) Conformal radiation therapy for pediatric ependymoma, chemotherapy for incompletely resected ependymoma, and observation for completely resected, supratentorial ependymoma. J Clin Oncol 37(12):974–983

    Article  CAS  Google Scholar 

  18. Fukuoka K, Kanemura Y, Shofuda T et al (2018) Significance of molecular classification of ependymomas: C11orf95-RELA fusion-negative supratentorial ependymomas are a heterogeneous group of tumors. Acta Neuropathol Commun 6(1):134

    Article  CAS  Google Scholar 

  19. Witt H, Mack SC, Ryzhova M et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20(2):143–157

    Article  CAS  Google Scholar 

  20. Panwalkar P, Clark J, Ramaswamy V et al (2017) Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathol 134(5):705–714

    Article  CAS  Google Scholar 

  21. Lim KY, Lee K, Shim Y et al (2022) Molecular subtyping of ependymoma and prognostic impact of Ki-67. Brain Tumor Pathol 39(1):1–13

    Article  CAS  Google Scholar 

  22. Ghasemi DR, Sill M, Okonechnikov K et al (2019) MYCN amplification drives an aggressive form of spinal ependymoma. Acta Neuropathol 138(6):1075–1089

    Article  CAS  Google Scholar 

  23. Chavali P, Rao S, Palavalasa S et al (2019) L1CAM immunopositivity in anaplastic supratentorial ependymomas: correlation with clinical and histological parameters. Int J Surg Pathol 27(3):251–258

    Article  Google Scholar 

  24. Wani K, Armstrong TS, Jones DT et al (2014) Characterization of L1CAM as a clinical marker for the C11orf95-RELA fusion in supratentorial ependymomas. Neuro Oncol 16(suppl 5):v30–v30

    Article  Google Scholar 

  25. Figarella-Branger D, Lechapt-Zalcman E, Tabouret E et al (2016) Supratentorial clear cell ependymomas with branching capillaries demonstrate characteristic clinicopathological features and pathological activation of nuclear factor-kappaB signaling. Neuro Oncol 18:919–927

    Article  CAS  Google Scholar 

  26. Wang L, Liu L, Li H et al (2019) RELA fusion in supratentorial extraventricular ependymomas: a morphologic, immunohistochemical, and molecular study of 43 cases. Am J Surg Pathol 43(12):1674–1681

    Article  Google Scholar 

  27. Zschernack V, Jünger ST, Mynarek M et al (2021) Supratentorial ependymoma in childhood: more than just RELA or YAP. Acta Neuropathol 141(3):455–466

    Article  CAS  Google Scholar 

  28. Tauziède-Espariat A, Siegfried A, Nicaise Y et al (2021) Supratentorial non-RELA, ZFTA-fused ependymomas: a comprehensive phenotype genotype correlation highlighting the number of zinc fingers in ZFTA-NCOA1/2 fusions. Acta Neuropathol Commun 9(1):135

    Article  Google Scholar 

  29. Upadhyaya SA, Robinson GW, Onar-Thomas A et al (2019) Molecular grouping and outcomes of young children with newly diagnosed ependymoma treated on the multi-institutional SJYC07 trial. Neuro Oncol 21(10):1319–1330

    Article  Google Scholar 

  30. Lin GL, Monje M (2020) Understanding the deadly silence of posterior fossa A ependymoma. Mol Cell 78(6):999–1001

    Article  CAS  Google Scholar 

  31. Mack SC, Witt H, Piro RM et al (2014) Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506(7489):445–450

    Article  CAS  Google Scholar 

  32. Jain SU, Do TJ, Lund PJ et al (2019) PFA ependymoma-associated protein EZHIP inhibits PRC2 activity through a H3 K27M-like mechanism. Nat Commun 10(1):2146

    Article  Google Scholar 

  33. Michealraj KA, Kumar SA, Kim LJY et al (2020) Metabolic regulation of the epigenome drives lethal infantile ependymoma. Cell 181(6):1329–1345

    Article  CAS  Google Scholar 

  34. Gessi M, Capper D, Sahm F et al (2016) Evidence of H3 K27M mutations in posterior fossa ependymomas. Acta Neuropathol 132(4):635–637

    Article  Google Scholar 

  35. Pajtler KW, Wen J, Sill M et al (2018) Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol 136(2):211–226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge and thank Mr. Sandeep Kumar, PhD scholar, for his help in preparation of tissue microarrays.

Funding

This work was partially supported by the Department of Science and Technology, Science and Engineering Research Board (DST-SERB), India (Grant No. EMR/2017/004385).

Author information

Authors and Affiliations

Authors

Contributions

DC: material preparation, data collection, analysis including statistics and manuscript writing. KG: study conception, data analysis, critical review of literature, and manuscript writing; TK: interpretation of results and statistical analysis; AS: planning and executing the experiments, data interpretation; PS: data collection, operative details and follow-up; RM and NK: follow-up data collection; BDR: interpretation of results and critical review of manuscript.

Corresponding author

Correspondence to Kirti Gupta.

Ethics declarations

Conflict of interest

No conflicts of interests.

Ethical approval

This study was in accordance with the ethical standards of the institutional research committee and was approved by the same. The study conforms to the Declaration of Helsinki’s ethical principles. Written informed consent was acquired from all human subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 560 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinnam, D., Gupta, K., Kiran, T. et al. Molecular subgrouping of ependymoma across three anatomic sites and their prognostic implications. Brain Tumor Pathol 39, 151–161 (2022). https://doi.org/10.1007/s10014-022-00429-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-022-00429-2

Keywords

Navigation