Skip to main content

Advertisement

Log in

Evaluation of extracellular matrix protein CCN1 as a prognostic factor for glioblastoma

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Recently, research efforts in identifying prognostic molecular biomarkers for malignant glioma have intensified. Cysteine-rich protein 61 (CCN1) is one of the CCN family of matricellular proteins that promotes cell growth and angiogenesis in cancers through its interaction with several integrins. In this study, we investigated the relationships among CCN1, O6-methylguanine-DNA methyltransferase expression, the tumor removal rate, and prognosis in 46 glioblastoma patients treated at the Okayama University Hospital. CCN1 expression was high in 31 (67 %) of these patients. The median progression-free survival (PFS) and overall survival (OS) times of patients with high CCN1 expression was significantly shorter than those of patients with low CCN1 expression (p < 0.005). In a multivariate Cox analysis, CCN1 proved to be an independent prognostic factor for patient survival [PFS, hazard ratio (HR) = 3.53 (1.55–8.01), p = 0.003 and OS, HR = 3.05 (1.35–6.87), p = 0.007]. Moreover, in the 31 patients who underwent gross total resection, the PFS and OS times of those with high CCN1 expression were significantly shorter than those with low CCN1 expression. It was concluded that CCN1 might emerge as a significant prognostic factor regarding the prognosis of glioblastoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  2. Lafuente JV, Alkiza K, Garibi JM et al (2000) Biologic parameters that correlate with the prognosis of human gliomas. Neuropathology 20:176–183

    Article  CAS  PubMed  Google Scholar 

  3. Wick W, Weller M, Weiler M, Batchelor T, Yung AW, Platten M (2011) Pathway inhibition: emerging molecular targets for treating glioblastoma. Neuro Oncol 13:566–579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. von Deimling A, Korshunov A, Hartmann C (2011) The next generation of glioma biomarkers: MGMT methylation, BRAF fusions and IDH1 mutations. Brain Pathol 21:74–87

    Article  Google Scholar 

  5. Pegg AE (1990) Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res 50:6119–6129

    CAS  PubMed  Google Scholar 

  6. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797

    CAS  PubMed  Google Scholar 

  7. Brell M, Tortosa A, Verger E et al (2005) Prognostic significance of O6-methylguanine-DNA methyltransferase determined by promoter hypermethylation and immunohistochemical expression in anaplastic gliomas. Clin Cancer Res 11:5167–5174

    Article  CAS  PubMed  Google Scholar 

  8. Babic AM, Kireeva ML, Kolesnikova TV, Lau LF (1998) CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci 95:6355–6360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. O’Brien TP, Yang GP, Sanders L, Lau LF (1990) Expression of cyr61, a growth factor-inducible immediate-early gene. Mol Cell Biol 10:3569–3577

    Article  PubMed Central  PubMed  Google Scholar 

  10. Walsh CT, Radeff-Huang J, Matteo R et al (2008) Thrombin receptor and RhoA mediate cell proliferation through integrins and cysteine-rich protein 61. FASEB J 22:4011–4021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Holbourn KP, Acharya KR, Perbal B (2008) The CCN family of proteins: structure-function relationships. Trends Biochem Sci 33:461–473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Burke E, Grobler M, Elderfield K et al (2013) Double-labelling immunohistochemistry for MGMT and a “cocktail” of non-tumourous elements is a reliable, quick and easy technique for inferring methylation status in glioblastomas and other primary brain tumours. Acta neuropathologica commun 1:22

    Article  Google Scholar 

  13. Zhou ZQ, Cao WH, Xie JJ et al (2009) Expression and prognostic significance of THBS1, Cyr61 and CTGF in esophageal squamous cell carcinoma. BMC Cancer 9:291

    Article  PubMed Central  PubMed  Google Scholar 

  14. Watari H, Xiong Y, Hassan MK, Sakuragi N (2009) Cyr61, a member of ccn (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family, predicts survival of patients with endometrial cancer of endometrioid subtype. Gynecol Oncol 112:229–234

    Article  CAS  PubMed  Google Scholar 

  15. Tang QL, Chen WL, Tan XY et al (2011) Expression and significance of Cyr61 in distant metastasis cells of human primary salivary adenoid cystic carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112:228–236

    Article  PubMed  Google Scholar 

  16. Sabile AA, Arlt MJ, Muff R et al (2012) Cyr61 expression in osteosarcoma indicates poor prognosis and promotes intratibial growth and lung metastasis in mice. J Bone Miner Res 27:58–67

    Article  CAS  PubMed  Google Scholar 

  17. Chintalapudi MR, Markiewicz M, Kose N et al (2008) Cyr61/CCN1 and CTGF/CCN2 mediate the proangiogenic activity of VHL-mutant renal carcinoma cells. Carcinogenesis 29:696–703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Esteller M, Toyota M, Sanchez-Cespedes M et al (2000) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res 60:2368–2371

    CAS  PubMed  Google Scholar 

  19. Lalezari S, Chou AP, Tran A et al (2013) Combined analysis of O6-methylguanine-DNA methyltransferase protein expression and promoter methylation provides optimized prognostication of glioblastoma outcome. Neuro Oncol 15:370–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Xie D, Yin D, Wang HJ et al (2004) Levels of expression of CYR61 and CTGF are prognostic for tumor progression and survival of individuals with gliomas. Clin Cancer Res 10:2072–2081

    Article  CAS  PubMed  Google Scholar 

  21. Xie D, Miller CW, O’Kelly J et al (2001) Breast cancer. Cyr61 is overexpressed, estrogen-inducible, and associated with more advanced disease. J Biol Chem 276:14187–14194

    CAS  PubMed  Google Scholar 

  22. Xie JJ, Xu LY, Wu ZY et al (2011) Expression of cysteine-rich 61 is correlated with poor prognosis in patients with esophageal squamous cell carcinoma. Eur J Surg Oncol 37:669–674

    Article  CAS  PubMed  Google Scholar 

  23. Xie D, Yin D, Tong X et al (2004) Cyr61 is overexpressed in gliomas and involved in integrin-linked kinase-mediated Akt and beta-catenin-TCF/Lef signaling pathways. Cancer Res 64:1987–1996

    Article  CAS  PubMed  Google Scholar 

  24. Chien W, Kumagai T, Miller CW et al (2004) Cyr61 suppresses growth of human endometrial cancer cells. J Biol Chem 279:53087–53096

    Article  CAS  PubMed  Google Scholar 

  25. Chen PP, Li WJ, Wang Y et al (2007) Expression of Cyr61, CTGF, and WISP-1 correlates with clinical features of lung cancer. PLOS One 2:e534

    Article  PubMed Central  PubMed  Google Scholar 

  26. Maeta N, Osaki M, Shomori K et al (2007) CYR61 downregulation correlates with tumor progression by promoting MMP-7 expression in human gastric carcinoma. Oncology 73:118–126

    Article  CAS  PubMed  Google Scholar 

  27. Haseley A, Boone S, Wojton J et al (2012) Extracellular matrix protein CCN1 limits oncolytic efficacy in glioma. Cancer Res 72:1353–1362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Miyazaki M, Nishihara H, Terasaka S et al (2014) Immunohistochemical evaluation of O6 -methylguanine DNA methyltransferase (MGMT) expression in 117 cases of glioblastoma. Neuropathology 34:268–276

    Article  CAS  PubMed  Google Scholar 

  29. De Salvo M, Maresca G, D’Agnano I et al (2011) Temozolomide induced c-Myc-mediated apoptosis via Akt signalling in MGMT expressing glioblastoma cells. Int J Radiat Biol 87:518–533

    Article  PubMed  Google Scholar 

  30. Parisi MS, Gazzerro E, Rydziel S, Canalis E (2006) Expression and regulation of CCN genes in murine osteoblasts. Bone 38:671–677

    Article  CAS  PubMed  Google Scholar 

  31. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602

    Article  CAS  PubMed  Google Scholar 

  32. Massague J (2008) A very private TGF-beta receptor embrace. Mol Cell 29:149–150

    Article  CAS  PubMed  Google Scholar 

  33. Chahal M, Xu Y, Lesniak D et al (2010) MGMT modulates glioblastoma angiogenesis and response to the tyrosine kinase inhibitor sunitinib. Neuro Oncol 12:822–833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8

    Article  PubMed  Google Scholar 

  35. Bendas G, Borsig L (2012) Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol 2012:676731

    Article  PubMed Central  PubMed  Google Scholar 

  36. Pistollato F, Abbadi S, Rampazzo E et al (2010) Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells 28:851–862

    Article  CAS  PubMed  Google Scholar 

  37. Haque I, Mehta S, Majumder M et al (2011) Cyr61/CCN1 signaling is critical for epithelial-mesenchymal transition and stemness and promotes pancreatic carcinogenesis. Mol Cancer 10:8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kurozumi K, Hardcastle J, Thakur R et al (2008) Oncolytic HSV-1 infection of tumors induces angiogenesis and upregulates CYR61. Mol Ther 16:1382–1391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Jun JI, Lau LF (2011) Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 10:945–963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Ishida J, Onishi M, Kurozumi K et al (2014) Integrin inhibitor suppresses bevacizumab-induced glioma invasion. Transl Oncol 7(292–302):e291

    Google Scholar 

  41. Shimazu Y, Kurozumi K, Ichikawa T, et al (2015) Integrin antagonist augments the therapeutic effect of adenovirus-mediated REIC/Dkk-3 gene therapy for malignant glioma. Gene Ther 22(2):146–154

    Article  CAS  PubMed  Google Scholar 

  42. Fujii K, Kurozumi K, Ichikawa T et al (2013) The integrin inhibitor cilengitide enhances the anti-glioma efficacy of vasculostatin-expressing oncolytic virus. Cancer Gene Ther 20:437–444

    Article  CAS  PubMed  Google Scholar 

  43. Stupp R, Hegi ME, Gorlia T et al (2014) Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 15:1100–1108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Koichi Ichimura in the Division of Brain Tumor Translational Research, National Cancer Center Research Institute, for advice concerning the MGMT pyrosequencing assay, and M. Arao and N. Uemori for their technical assistance. This study was supported by Grants-in-aid of Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science, and Technology to K.K. (Nos. 20890133 and 21791364), and T.I. (Nos. 19591675 and 22591611).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Kurozumi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10014_2015_227_MOESM1_ESM.ppt

Supplementary material 1 (PPT 271 kb) Kaplan–Meier survival plot for samples with differential CCN1/CYR61 gene expression (REMBRANDT)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, J., Kurozumi, K., Ichikawa, T. et al. Evaluation of extracellular matrix protein CCN1 as a prognostic factor for glioblastoma. Brain Tumor Pathol 32, 245–252 (2015). https://doi.org/10.1007/s10014-015-0227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-015-0227-3

Keywords

Navigation