Skip to main content
Log in

Gliedelastizität in Roboterarmen

Von einem Dilemma zu neuen Möglichkeiten der Kraftmessung und Interaktion

Flexible robot links

A dilemma offers novel options for force sensing and interaction control

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Zusammenfassung

Das Auftreten von elastischen Effekten in der Tragwerksstruktur von Mehrkörpersystemen ist in der Regel unerwünscht. Lastabhängige Verbiegungen verringern die Präzision des Mechanismus, während auftretende Schwingungen die Ausregelzeiten von gewünschten Bewegungen verlängern. Mit entsprechendem Entwicklungsaufwand wird häufig durch die Konstruktionsweise sowie die Auswahl der eingesetzten Materialien versucht, diese Elastizität bis auf ein vernachlässigbares Maß zu minimieren.

Der Beitrag betrachtet die elastischen Eigenschaften in der Tragwerksstruktur aus einer dazu veränderten Perspektive. Er zeigt anhand eines gliedelastischen Roboterarms beispielhaft auf, wie in sechs Schritten durch regelungstechnische Kompensation der Schwingungen und statischen Verbiegungen die ursprünglich nachteilige Eigenschaft zum Zweck der Messung und Regelung von Kontaktkräften ausgenutzt werden kann.

Abstract

The emergence of link elasticity in multi-body systems is typically undesired. Load dependent deflections deteriorate the precision of the mechanism, while oscillations prolong settling times. Commonly, the engineer seeks to minimize the degree of elasticity through the selection of materials and structure design.

This paper looks at the link elasticity from a different perspective. It proposes a six step control approach to actively damp oscillations, compensate for static deflections and finally exploit the elasticity for contact force sensing and physical interaction control. This path from elasticity being a functional mechanism flaw to link compliance offering new potentials for force control is exemplified based on multi-link experimental setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13
Abb. 14
Abb. 15

Notes

  1. https://youtu.be/kJPuenyxeps?t=40s

  2. http://www.youtube.com/watch?v=P4_i_kGt2jA

  3. https://youtu.be/kJPuenyxeps?t=2m10s

  4. https://youtu.be/cAk5CPEWRMk

Literatur

  1. Benosman M, Le Vey G (2004) Control of flexible manipulators: A survey. Robotica 22(5):533–545

    Article  Google Scholar 

  2. Book WJ (1974) Modeling, design and control of flexible manipulator arms. Ph.D. thesis, Massachusetts Institute of Technology

    Google Scholar 

  3. Book WJ (1990) Modeling, design, and control of flexible manipulator arms: A tutorial review. 29th Conference on Decision and Control., S 500–506

    Google Scholar 

  4. Dankert J, Dankert H (2013) Technische Mechanik, 7. Aufl. Lehrbuch. Springer Vieweg, Wiesbaden

    Book  MATH  Google Scholar 

  5. Dubus G, David O, Measson Y (2009) Vibration Control of a Flexible Arm for the ITER Maintenance Using Unknown Visual Features From Inside the Vessel. International Conference on Intelligent Robots and Systems. IEEE/RSJ, S 5697–5704

  6. Dwivedy S, Eberhard P (2006) Dynamic analysis of flexible manipulators, a literature review. Mech Mach Theory 41(7):749–777

    Article  MathSciNet  MATH  Google Scholar 

  7. Gattringer H (2011) Starr-elastische Robotersysteme. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  8. Gorinevsky D, Formalsky A, Schneider A (1997) Force Control of Robotic Systems. CRC Press, Boca Raton

    MATH  Google Scholar 

  9. Guizzo E, Ackerman E (2012) The rise of the robot worker. IEEE Spectr 49(10):34–41

    Article  Google Scholar 

  10. Hersch M, Guenter F, Calinon S, Billard A (2008) Dynamical system modulation for robot learning via kinesthetic demonstrations. Ieee Trans Robotics 24(6):1463–1467

    Article  Google Scholar 

  11. Hill KO, Meltz G (1997) Fiber Bragg grating technology fundamentals and overview. J Light Technol 15(8):1263–1276

    Article  Google Scholar 

  12. Isermann R, Münchhof M (2011) Identification of Dynamic Systems – An Introduction with Applications. Springer, Berlin Heidelberg

    Book  MATH  Google Scholar 

  13. Khalil W, Dombre E (2004) Modeling, identification and control of robots. Butterworth-Heinemann, London, UK

    MATH  Google Scholar 

  14. Kiang CT, Spowage A, Yoong CK (2015) Review of Control and Sensor System of Flexible Manipulator. J Intell Robotic Syst 77(1):187–213

    Article  Google Scholar 

  15. Konno A, Uchiyama M, Murakami M (1997) Configuration-dependent vibration controllability of flexible-link manipulators. Int J Rob Res 16(4):567

    Article  Google Scholar 

  16. Luca AD, Mattone R (2004) An adapt-and-detect actuator FDI scheme for robot manipulators. International Conference on Robotics and Automation, Bd. 5., S 4975–4980

    Google Scholar 

  17. Luca AD, Mattone R (2005) Sensorless robot collision detection and hybrid force/motion control. International Conference on Robotics and Automation., S 999–1004

    Google Scholar 

  18. Malzahn J (2014) Modeling and Control of Multi-Elastic-Link Robots under Gravity: From Oscillation Damping and Position Control to Physical Interaction. Dissertation, TU Dortmund, Dortmund

    Google Scholar 

  19. Malzahn J, Bertram T (2014) Collision Detection and Reaction for a Multi-Elastic-Link Robot Arm. IFAC World Congress 2014., S 320–325

    Google Scholar 

  20. Malzahn J, Bertram T (2014) Fractional Order Strain Feedback for Oscillation Damping of a Multi-Elastic-Link Arm Under Gravity. International Symposium on Robotics and German Conference on Robotics. VDE/IFR, S 716–723

  21. Malzahn J, Phung AS, Bertram T (2012) A Multi-Link-Flexible Robot Arm Catching Thrown Balls. German Conference on Robotics., S 411–416

    Google Scholar 

  22. Malzahn J, Phung AS, Hoffmann F, Bertram T (2011) Vibration control of a multi-flexible-link robot arm under gravity. International Conference on Robotics and Biomimetics., S 1249–1254

    Google Scholar 

  23. Malzahn J, Reinhart RF, Bertram T (2014) Dynamics Identification of a Damped Multi Elastic Link Robot Arm under Gravity. IEEE International Conference on Robotics and Automation., S 2170–2175

    Google Scholar 

  24. Malzahn J, Schloss R, Bertram T (2015) Link Elasticity Exploited for Payload Estimation and Force Control. IEEE/RSJ International Conference on Intelligent Robots and Systems., S 1508–1513

    Google Scholar 

  25. Meirovitch L (2001) Fundamentals of vibrations. McGraw-Hill, Boston

    Google Scholar 

  26. O’Connor WJ, La Ramos de Flor F, McKeown D, Feliu V (2009) Wave-based control of non-linear flexible mechanical systems. Nonlinear Dyn 57(1):113–123

    Article  MATH  Google Scholar 

  27. Phung AS, Malzahn J, Hoffmann F, Bertram T (2011) Data based kinematic model of a multi-flexible-link robot arm for varying payloads. International Conference on Robotics and Biomimetics., S 1255–1260

    Google Scholar 

  28. Schröder D (2009) Elektrische Antriebe – Regelung von Antriebssystemen, 3. Aufl. Springer, Berlin Heidelberg

    Google Scholar 

  29. Sciavicco L, Siciliano B (2000) Modelling and Control of Robot Manipulators, 2. Aufl. Springer, London

    MATH  Google Scholar 

  30. Takyar MS, Georgiou TT (2007) The fractional integrator as a control design element. Conference on Decision and Control., S 239–244

    Google Scholar 

  31. Tsuji T, Tanaka Y (2005) Tracking Control Properties of Human – Robotic Systems Based on Impedance Control. IEEE Trans Syst Man Cybern 35(4):523–535

    Article  Google Scholar 

  32. Vinagre BM et al (2000) Some approximations of fractional order operators used in control theory and applications. Fract Calc Appl Analysis 3(3):231–248

    MathSciNet  MATH  Google Scholar 

  33. Jiang X, Yabe Y, Konno A, Uchiyama M (2008) Vibration Suppression Control of a Flexible Arm Using Image Features of Unknown Objects. IEEE/RSJ International Conference on Intelligent Robots and Systems., S 3783–3788

    Google Scholar 

  34. Zipter V, Zürn M, Berger U (2011) Entwicklung einer Bewertungsmethode für die Integration von „Robot Farming“ Konzepten in Montageprozesse: Ein Beitrag zur wandlungsfähigen Montage. Congress Automation. VDI-Verl., S 235–245

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Malzahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malzahn, J., Bertram, T. Gliedelastizität in Roboterarmen. Forsch Ingenieurwes 80, 121–136 (2016). https://doi.org/10.1007/s10010-016-0208-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-016-0208-7

Navigation