Skip to main content

Advertisement

Log in

Electrodeposition of nanoporous Ni0.85Se arrays anchored on rGO promotes high-efficiency oxygen evolution reaction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Highly efficient and low-cost electrocatalyst is much desirable for oxygen evolution reaction (OER) to enhance the water splitting efficiency. In this work, a self-supported nanoporous Ni0.85Se/rGO was electrodeposited on NF and used as OER catalyst. The synthesized Ni0.85Se/rGO exhibits a low overpotential of 280 mV to afford 100 mA cm−2, a small Tafel slope of 40.2 mV dec−1, and a high stability with nearly negligible potential fluctuation at a large current density of 100 mA cm−2 during 24-h long-term test, which is at the top level among recently reported OER electrocatalyst. The mechanism reason for the outstanding stability of Ni0.85Se/rGO was revealed. It is mainly attributed to its well-maintained nanoporous structure, larger ECSA, high electrical conductivity, and most importantly its superaerophobic surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dai L, Chen ZN, Li L, Yin P, Liu Z, Zhang H (2020) Ultrathin Ni(0)-embedded Ni(OH)2 heterostructured nanosheets with enhanced electrochemical overall water splitting. Adv Mater 32(8):1906915. https://doi.org/10.1002/adma.201906915

    Article  CAS  Google Scholar 

  2. Takata T, Jiang J, Sakata Y, Nakabayashi M, Shibata N, Nandal V, Domen K (2020) Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581(7809):411–414. https://doi.org/10.1038/s41586-020-2278-9

    Article  CAS  PubMed  Google Scholar 

  3. Li L, Wang P, Shao Q, Huang X (2020) Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem Soc Rev 49(10):3072–3106. https://doi.org/10.1039/d0cs00013b

    Article  CAS  PubMed  Google Scholar 

  4. Liang C, Zou P, Nairan A, Zhang Y, Liu J, Liu K, Yang C (2020) Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ Sci 13(1):86–95. https://doi.org/10.1039/c9ee02388g

    Article  CAS  Google Scholar 

  5. Zhao D, Zhuang Z, Cao X, Zhang C, Peng Q, Chen C, Li Y (2020) Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem Soc Rev 49(7):2215–2264. https://doi.org/10.1039/c9cs00869a

    Article  CAS  PubMed  Google Scholar 

  6. Xu H, Fei B, Cai G, Ha Y, Liu J, Jia H, Wu R (2020) Boronization-induced ultrathin 2D nanosheets with abundant crystalline-amorphous phase boundary supported on nickel foam toward efficient water splitting. Adv Energy Mater 10(3):1902714. https://doi.org/10.1002/aenm.201902714

    Article  CAS  Google Scholar 

  7. Meng L, Wang M, Sun H, Tian W, Xiao C, Wu S, Cao F, Li L (2020) Designing a transparent CdIn2S4/In2S3 bulk-heterojunction photoanode integrated with a perovskite solar cell for unbiased water splitting. Adv Mater 32(30):2002893. https://doi.org/10.1002/adma.202002893

    Article  CAS  Google Scholar 

  8. Poerwoprajitno AR, Gloag L, Cheong S, Gooding JJ, Tilley RD (2019) Synthesis of low- and high-index faceted metal (Pt, Pd, Ru, Ir, Rh) nanoparticles for improved activity and stability in electrocatalysis. Nanoscale 11(41):18995–19011. https://doi.org/10.1039/c9nr05802h

    Article  CAS  PubMed  Google Scholar 

  9. Lai WH, Zhang LF, Hua WB, Indris S, Yan ZC, Hu Z, Zhang B, Liu Y, Wang L, Liu M, Liu R, Wang YX, Wang JZ, Hu Z, Liu HK, Chou SL, Dou SX (2019) General π-electron-assisted strategy for Ir, Pt, Ru, Pd, Fe, Ni single-atom electrocatalysts with bifunctional active sites for highly efficient water splitting. Angew Chem Int Edit 58(34):11868–11873. https://doi.org/10.1002/anie.201904614

    Article  CAS  Google Scholar 

  10. He P, Yu XY, Lou XW (2017) Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew Chem Int Edit 56(14):3897–3900. https://doi.org/10.1002/anie.201612635

    Article  CAS  Google Scholar 

  11. Wang X, Xiao H, Li A, Li Z, Liu S, Zhang Q, Gong Y, Zheng L, Zhu Y, Chen C, Wang D, Peng Q, Gu L, Han X, Li J, Li Y (2018) Constructing NiCo/Fe3O4 heteroparticles within MOF-74 for efficient oxygen evolution reactions. J Am Chem Soc 140(45):15336–15341. https://doi.org/10.1021/jacs.8b08744

    Article  CAS  PubMed  Google Scholar 

  12. Zhou D, Cai Z, Lei X, Tian W, Bi Y, Jia Y, Han N, Gao T, Zhang Q, Kuang Y, Pan J, Sun X, Duan X (2018) NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions. Adv Energy Mater 8(9):1701905. https://doi.org/10.1002/aenm.201701905

    Article  CAS  Google Scholar 

  13. Guo M, Qayum A, Dong S, Jiao X, Chen D, Wang T (2020) In situ conversion of metal (Ni, Co or Fe) foams into metal sulfide (Ni3S2, Co9S8 or FeS) foams with surface grown N-doped carbon nanotube arrays as efficient superaerophobic electrocatalysts for overall water splitting. J Mater Chem A 8(18):9239–9247. https://doi.org/10.1039/d0ta02337j

    Article  CAS  Google Scholar 

  14. Feng Z, Wang E, Huang S, Liu J (2020) A bifunctional nanoporous Ni-Co-Se electrocatalyst with a superaerophobic surface for water and hydrazine oxidation. Nanoscale 12(7):4426–4434. https://doi.org/10.1039/c9nr09959j

    Article  CAS  PubMed  Google Scholar 

  15. Swesi AT, Masud J, Nath M (2016) Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy Environ Sci 9(5):1771–1782. https://doi.org/10.1039/c5ee02463c

    Article  CAS  Google Scholar 

  16. Sivanantham A, Shanmugam S (2017) Nickel selenide supported on nickel foam as an efficient and durable non-precious electrocatalyst for the alkaline water electrolysis. Appl Catal B Environ 203:485–493. https://doi.org/10.1016/j.apcatb.2016.10.050

    Article  CAS  Google Scholar 

  17. Chen Y, Ren Z, Fu H, Zhang X, Tian G, Fu H (2018) NiSe-Ni0.85Se heterostructure nanoflake arrays on carbon paper as efficient electrocatalysts for overall water splitting. Small 14(25):1800763. https://doi.org/10.1002/smll.201800763

    Article  CAS  Google Scholar 

  18. Sun YY, Zhu YY, Wu LK, Hou GY, Tang YP, Cao HZ, Zheng GQ (2020) Hierarchical NiSe@Ni nanocone arrays electrocatalyst for oxygen evolution reaction. Electrochim Acta 353:136519. https://doi.org/10.1016/j.electacta.2020.136519

    Article  CAS  Google Scholar 

  19. Wang B, Chen Y, Wang X, Ramkumar J, Zhang X, Yu B, Yang D, Karpuraranjith M, Zhang W (2020) rGO wrapped trimetallic sulfide nanowires as an efficient bifunctional catalyst for electrocatalytic oxygen evolution and photocatalytic organic degradation. J Mater Chem A 8(27):13558–13571. https://doi.org/10.1039/d0ta04383d

    Article  CAS  Google Scholar 

  20. Feng Z, Zhang H, Gao B, Lu P, Li D, Xing P (2020) Ni-Zn nanosheet anchored on rGO as bifunctional electrocatalyst for efficient alkaline water-to-hydrogen conversion via hydrazine electrolysis. Int J Hydrogen Energ 45(38):19335–19343. https://doi.org/10.1016/j.ijhydene.2020.05.120

    Article  CAS  Google Scholar 

  21. Yu J, Li Q, Xu CY, Chen N, Li Y, Liu H, Zhen L, Dravid VP, Wu J (2017) NiSe2 pyramids deposited on N-doped graphene encapsulated Ni foam for high-performance water oxidation. J Mater Chem A 5(8):3981–3986. https://doi.org/10.1039/c6ta10303k

    Article  CAS  Google Scholar 

  22. Liu G, Shuai C, Guo R, Liu N, Niu X, Dong Q, Wang J, Gao Q, Chen Y, Liu W (2020) The one-pot synthesis of porous Ni0.85Se nanospheres on graphene as an efficient and durable electrocatalyst for overall water splitting. New J Chem 44(40):17313–17322. https://doi.org/10.1039/d0nj04197a

    Article  CAS  Google Scholar 

  23. Feng Z, Shi T, Liu W, Zhang W, Zhang H (2022) Highly active bifunctional electrocatalyst: nanoporous (Ni, Co)0.85Se anchored on rGO for water and hydrazine oxidation. Int J Energ Res 46(11):15938–15947. https://doi.org/10.1002/er.8292

    Article  CAS  Google Scholar 

  24. Shan X, Liu J, Mu H, Xiao Y, Mei B, Liu W, Lin G, Jiang Z, Wen L, Jiang L (2020) An engineered superhydrophilic/superaerophobic electrocatalyst composed of the supported CoMoSx chalcogel for overall water splitting. Angew Chem Int Edit 59(4):1659–1665. https://doi.org/10.1002/anie.201911617

    Article  CAS  Google Scholar 

  25. Hao J, Yang W, Huang Z, Zhang C (2016) Superhydrophilic and superaerophobic copper phosphide microsheets for efficient electrocatalytic hydrogen and oxygen evolution. Adv Mater Interfaces 3(16):160023. https://doi.org/10.1002/admi.201600236

    Article  CAS  Google Scholar 

  26. Li Y, Zhang H, Jiang M, Kuang Y, Sun X, Duan X (2016) Ternary NiCoP nanosheet arrays: an excellent bifunctional catalyst for alkaline overall water splitting. Nano Res 9(8):2251–2259. https://doi.org/10.1007/s12274-016-1112-z

    Article  CAS  Google Scholar 

  27. Tian Y, Lin Z, Yu J, Zhao S, Liu Q, Liu J, Chen R, Qi Y, Zhang H, Li R, Li J, Wang J (2019) Superaerophobic quaternary Ni-Co-S-P nanoparticles for efficient overall water-splitting. ACS Sustainable Chem Eng 7(17):14639–14646. https://doi.org/10.1021/acssuschemeng.9b02556

    Article  CAS  Google Scholar 

  28. Liu W, Shi T, Feng Z (2023) Bifunctional zeolitic imidazolate framework-67 coupling with CoNiSe electrocatalyst for efficient hydrazine-assisted water splitting. J Colloid Interf Sci 630:888–899. https://doi.org/10.1016/j.jcis.2022.10.152

    Article  CAS  Google Scholar 

  29. Sun Q, Li Y, Wang J, Cao B, Yu Y, Zhou C, Zhang G, Wang Z, Zhao C (2020) Pulsed electrodeposition of well-ordered nanoporous Cu-doped Ni arrays promotes high-efficiency overall hydrazine splitting. J Mater Chem A 8(40):21084–21093. https://doi.org/10.1039/d0ta08078k

    Article  CAS  Google Scholar 

  30. Ong WJ, Tan LL, Chai SP, Yong ST, Mohamed AR (2015) Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 13:757–770. https://doi.org/10.1016/j.nanoen.2015.03.014

    Article  CAS  Google Scholar 

  31. Wang M, Yu X, Wang Z, Gong X, Guo Z, Dai L (2017) Hierarchically 3D porous films electrochemically constructed on gas-liquid-solid three-phase interface for energy application. J Mater Chem A 5(20):9488–9513. https://doi.org/10.1039/c7ta02519j

    Article  CAS  Google Scholar 

  32. Xie G, Forslund M, Pan J (2014) Direct electrochemical synthesis of reduced graphene oxide (rGO)/copper composite films and their electrical/electroactive properties. ACS Appl Mater Interfaces 6(10):7444–7455. https://doi.org/10.1021/am500768g

    Article  CAS  PubMed  Google Scholar 

  33. Huang B, Zhang X, Cai J, Liu W, Lin S (2019) A novel MnO2/rGO composite prepared by electrodeposition as a non-noble metal electrocatalyst for ORR. J Appl Electrochem 49(8):767–777. https://doi.org/10.1007/s10800-019-01325-y

    Article  CAS  Google Scholar 

  34. Guo K, Yang F, Cui S, Chen W, Mi L (2016) Controlled synthesis of 3D hierarchical NiSe microspheres for high-performance supercapacitor design. RSC Adv 6(52):46523–46530. https://doi.org/10.1039/c6ra06909f

    Article  CAS  Google Scholar 

  35. Shao L, Qian X, Li H, Xu C, Hou L (2017) Shape-controllable syntheses of ternary Ni-Co-Se alloy hollow microspheres as highly efficient catalytic materials for dye-sensitized solar cells. Chem Eng J 315:562–572. https://doi.org/10.1016/j.cej.2017.01.055

    Article  CAS  Google Scholar 

  36. Park SK, Kim JK, Kang YC (2017) Metal-organic framework-derived CoSe2/(NiCo)Se2 box-in-box hollow nanocubes with enhanced electrochemical properties for sodium-ion storage and hydrogen evolution. J Mater Chem A 5(35):18823–18830. https://doi.org/10.1039/c7ta05571d

    Article  CAS  Google Scholar 

  37. Feng Z, Gao B, Wang L, Zhang H, Lu P, Xing P (2020) Nanoporous cobalt-selenide as high-performance bifunctional electrocatalyst towards oxygen evolution and hydrazine oxidation. J Electrochem Soc 167(13):134501. https://doi.org/10.1149/1945-7111/abb4ad

  38. Chen TY, Vedhanarayanan B, Lin SY, Shao LD, Sofer Z, Lin JY, Lin TW (2020) Electrodeposited NiSe on a forest of carbon nanotubes as a free-standing electrode for hybrid supercapacitors and overall water splitting. J Colloid Interf Sci 574:300–311. https://doi.org/10.1016/j.jcis.2020.04.034

    Article  CAS  Google Scholar 

  39. Yu D, Wei L, Jiang W, Wang H, Sun B, Zhang Q, Goh K, Si R, Chen Y (2013) Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction. Nanoscale 5(8):3457–3464. https://doi.org/10.1039/c3nr34267k

    Article  CAS  PubMed  Google Scholar 

  40. Yong J, Chen F, Fang Y, Huo J, Yang Q, Zhang J, Hou X (2017) Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti-or capturing bubbles. ACS Appl Mater Inter 9(45):39863–39871. https://doi.org/10.1021/acsami.7b14819

    Article  CAS  Google Scholar 

Download references

Funding

We are grateful for the financial support by the Foundational Research Funds of Zhongye Changtian International Engineering Co., Ltd., China (2022JCYJ03); the Fundamental Research Funds for Central Universities (N2225030); and the National Natural Science Foundation of China (51904060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongbao Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1884 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Ren, L., Liu, Y. et al. Electrodeposition of nanoporous Ni0.85Se arrays anchored on rGO promotes high-efficiency oxygen evolution reaction. J Solid State Electrochem 27, 1469–1476 (2023). https://doi.org/10.1007/s10008-023-05418-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05418-9

Keywords

Navigation