Skip to main content

Advertisement

Log in

Solid and acid electrolytes for Al-air batteries based on xanthan-HCl hydrogels

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper presents first investigations on solid and strongly acid electrolytes for Al-air batteries. These electrolytes are prepared starting from a “green” polysaccharide (xanthan gum) and HCl solutions (between 4 and 24 wt%). The gelling capability of xanthan is used to obtain real solid products characterized by ionic conductivities of practical interest (10−2 S cm−1) in electrochemical cells. The adsorption properties of xanthan on metal Al are exploited to control anode self-corrosion and realize Al-air cells with very high anodic efficiencies (> 80%). The behavior of Al-air cells is studied utilizing the weight loss technique, electrochemical impedance spectroscopy, potentiodynamic polarization curves, scanning electron microscopy coupled to energy-dispersive spectroscopy, and discharge tests at constant current (1–5 mA) with Pt/C-based air cathodes. The best overall performance is observed with electrolytes prepared starting from HCl at 24% and gel solid/liquid ratio of 1.40 g ml−1. The hydrogels obtained in this work permit for the first time the operation of an Al-air galvanic cell based on solid and strongly acid electrolytes with high anodic efficiency and limited dendrite formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Blueton KF, Sammells AF (1979) Metal/air batteries: Their status and potential — a review. J Power Sources 4(4):263–279

    Article  Google Scholar 

  2. Rahman MA, Wang X, Wen C (2013) High energy density metal-air batteries: a review. J Electrochem Soc 160(10):A1759–A1771

    Article  CAS  Google Scholar 

  3. Li Q, Bjerrum NJ (2002) Aluminum as anode for energy storage and conversion: a review. J Power Sources 110(1):1–10

    Article  CAS  Google Scholar 

  4. Egan DR, Ponce de Leon C, Wood RJK, Jones RL, Stokes KR, Walsh FC (2013) Developments in electrode materials and electrolytes for aluminium–air batteries. J Power Sources 236:293–310

    Article  CAS  Google Scholar 

  5. Li J, Chen J, Wang H, Ren Y, Liu K, Tang Y, Shao M (2017) Fe/N co-doped carbon materials with controllable structure as highly efficient electrocatalysts for oxygen reduction reaction in Al-air batteries. Energy Storage Mater 8:49–58

    Article  Google Scholar 

  6. Li J, Zhou N, Song J, Fu L, Yan J, Tang Y, Wang H (2017) Cu–MOF-derived Cu/Cu2O nanoparticles and CuNxCy species to boost oxygen reduction activity of Ketjenblack carbon in al–air battery. ACS Sustain Chem Eng 6:413–421

    Article  CAS  Google Scholar 

  7. Li J, Zhou Z, Liu K, Li F, Peng Z, Tang Y, Wang H (2017) Co3O4/Co-N-C modified ketjenblack carbon as an advanced electrocatalyst for Al-air batteries. J Power Sources 343:30–38

    Article  CAS  Google Scholar 

  8. Mokhtar M, Talib MZM, Majlan EH, Tasirin SM, W Ramli WMF, Daud WRW, Sahari J (2015) Recent developments in materials for aluminum–air batteries: A review. J Ind Eng Chem 32:1–20

    Article  CAS  Google Scholar 

  9. Revel R, Audichon T, Gonzalez S (2014) Non-aqueous aluminium–air battery based on ionic liquid electrolyte. J Power Sources 272:415–421

    Article  CAS  Google Scholar 

  10. Hog M, Burgenmeister B, Bromberger K, Schuster M, Riedel S, Krossing I (2017) First investigations towards the feasibility of an Al/Br2 battery based on ionic liquids. ChemElectroChem 4(11):2934–2942

    Article  CAS  Google Scholar 

  11. Safak S, Duran B, Yurt A, Turkoglu G (2012) Schiff bases as corrosion inhibitor for aluminium in HCl solution. Corros Sci 54:251–259

    Article  CAS  Google Scholar 

  12. Fares MM, Maayta AK, Al-Mustafa JA (2012) Corrosion inhibition of iota-carrageenan natural polymer on aluminum in presence of zwitterion mediator in HCl media. Corros Sci 65:223–230

    Article  CAS  Google Scholar 

  13. Fares MM, Maayta AK, Al-Qudah MM (2012) Pectin as promising green corrosion inhibitor of aluminum in hydrochloric acid solution. Corros Sci 60:112–117

    Article  CAS  Google Scholar 

  14. Oguzie EE (2017) Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract. Corros Sci 49:1527–1539

    Article  CAS  Google Scholar 

  15. Deyab MA (2017) 1-Allyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide as an effective organic additive in aluminum-air battery. Electrochim Acta 244:178–183

    Article  CAS  Google Scholar 

  16. Li L, Manthiram A (2015) Long-life, high-voltage acidic Zn–air batteries. Adv Energy Mater 6(1502054):1–7

    Google Scholar 

  17. Fan L, Wei S, Li S, Li Q, Lu Y (2018) Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv Energy Mater 8(1702657):1–31

    Google Scholar 

  18. Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Chen L (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater 5:139–164

    Article  Google Scholar 

  19. Zhang Z, Zuo C, Liu Z, Yu Y, Zuo Y, Song Y (2014) All-solid-state Al–air batteries with polymer alkaline gel electrolyte. J Power Sources 251:470–475

    Article  CAS  Google Scholar 

  20. Mohamad AA (2008) Electrochemical properties of aluminum anodes in gel electrolyte-based aluminum-air batteries. Corros Sci 50(12):3475–3479

    Article  CAS  Google Scholar 

  21. Aziz MF, Buraidah MH, Careem MA, Arof AK (2015) PVA based gel polymer electrolytes with mixed iodide salts (K+I− and Bu4N+I−) for dye-sensitized solar cell application. Electrochim Acta 182:217–223

    Article  CAS  Google Scholar 

  22. Colò F, Bella F, Nair JR, Destro M, Gerbaldi C (2015) Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries. Electrochim Acta 174:185–190

    Article  CAS  Google Scholar 

  23. Isa MIN, Samsudin AS (2016) Potential study of biopolymer-based carboxymethylcellulose electrolytes system for solid-state battery application. Int J Polym Mater 65(11):561–567

    Article  CAS  Google Scholar 

  24. Singh R, Jadhav NA, Majumder S, Bhattacharya B, Singh PK (2013) Novel biopolymer gel electrolyte for dye-sensitized solar cell application. Carbohydr Polym 91(2):682–685

    Article  CAS  PubMed  Google Scholar 

  25. Syahidah SN, Majid SR (2013) Super-capacitive electro-chemical performance of polymer blend gel polymer electrolyte (GPE) in carbon-based electrical double-layer capacitors. Electrochim Acta 112:678–685

    Article  CAS  Google Scholar 

  26. Chiappone A, Bella F, Nair JR, Meligrana G, Bongiovanni R, Gerbaldi C (2014) Structure–performance correlation of nanocellulose-based polymer electrolytes for efficient quasi-solid DSSCs. ChemElectroChem 1(8):1350–1358

    Article  CAS  Google Scholar 

  27. Finkenstadt VL (2005) Natural polysaccharides as electroactive polymers. Appl Microbiol Biot 67(6):735–745

    Article  CAS  Google Scholar 

  28. Kadokawa J, Murakami M, Takegawa A, Kaneko Y (2009) Preparation of cellulose–starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid. Carbohydr Polym 75(1):180–183

    Article  CAS  Google Scholar 

  29. Yoshida H, Takei F, Sawatari N (2002) High ionic conducting polymer with polysaccharide and its applications. FUJITSU Scientific & Technical Journal 38:39–45

    CAS  Google Scholar 

  30. Di Palma TM, Migliardini F, Caputo D, Corbo P (2017) Xanthan and κ-carrageenan based alkaline hydrogels as electrolytes for Al/air batteries. Carbohydr Polym 157:122–127

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Sun Q, Li W, Adair KR, Li J, Sun X (2017) A comprehensive review on recent progress in aluminium-air batteries. Green Energ Environ 2(3):246–277

    Article  Google Scholar 

  32. Morris VJ (2006) In: Stephen AM, Phillips GO, Williams PA (eds) Food polysaccharides and their applications. Taylor & Francis, New York

  33. Mobin M, Rizvi M (2016) Inhibitory effect of xanthan gum and synergistic surfactant additives for mild steel corrosion in 1 M HCl. Carbohydr Polym 136:384–393

    Article  CAS  PubMed  Google Scholar 

  34. Biswas A, Pal S, Udayabhanu G (2015) Experimental and theoretical studies of xanthan gum and its graft co-polymer as corrosion inhibitor for mild steel in 15% HCl. Appl Surf Sci 353:173–183

    Article  CAS  Google Scholar 

  35. Arukalam IO, Alaohuru CO, Ugbo CO, Jideofor KN, Ehirim PN, Madufor IC (2014) Effect of Xanthan gum on the Corrosion Protection of Aluminium in HCl medium. Int J Adv Res Tech 3:5–16

    Google Scholar 

  36. Arukalam IO, Ijomah NT, Nwanonenyi SC, Obasi HC, Aharanwa BC, Anyanwu PI (2014) Studies on acid corrosion of aluminium by a naturally occurring polymer (Xanthan gum). Int J Sci Eng Res 5:663–673

    Google Scholar 

  37. Babaladimath G, Badalamoole V, Nandibewoor ST (2018) Electrical conducting Xanthan Gum-graft-polyaniline as corrosion inhibitor for aluminum in hydrochloric acid environment. Mater Chem Phys 205:171–179

    Article  CAS  Google Scholar 

  38. Branzoi V, Golgovici F, Branzoi F (2002) Aluminium corrosion in hydrochloric acid solutions and the effect of some organic inhibitors. Mater Chem Phys 78:122–131

    Article  CAS  Google Scholar 

  39. El-Awadi AA, Abd-El-Nabey BA, Aziz SG (1993) Thermodynamic and kinetic factors in chloride ion pitting and nitrogen donor ligand inhibition of aluminium metal corrosion in aggressive acid media. J Chem Soc Faraday Trans 89(5):795–802

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. G. Perretta (Istituto Motori) for the support in SEM-EDS measurements.

Funding

The authors gratefully acknowledge the Italian Ministry of University and Research for financial support in “Fuel Cell Lab - Innovative systems and high efficiency technologies for poly-generation” Project, PON03PE_00109_1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Corbo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Migliardini, F., Di Palma, T.M., Gaele, M.F. et al. Solid and acid electrolytes for Al-air batteries based on xanthan-HCl hydrogels. J Solid State Electrochem 22, 2901–2916 (2018). https://doi.org/10.1007/s10008-018-4003-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4003-2

Keywords

Navigation