Skip to main content

Advertisement

Log in

Nano oxides incorporated sulfonated poly(ether ether ketone) membranes with improved selectivity and stability for vanadium redox flow battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Three kinds of sulfonated poly(ether ether ketone) (SPEEK)/nano oxide (Al2O3, SiO2, and TiO2) composite membranes are fabricated for vanadium redox flow battery (VRFB) application. The composite membranes with 5 wt% of Al2O3, SiO2, and TiO2 (S/A-5 %, S/S-5 %, and S/T-5 %) exhibit excellent cell performance in VRFB. Incorporation of nano oxides (Al2O3, SiO2, and TiO2) in SPEEK membrane improves in aspect of thermal, mechanical, and chemical stabilities due to the hydrogen bonds’ interaction between SPEEK matrix and nano oxides. The energy efficiencies (EEs) of composite membranes are higher than that of Nafion 117 membrane, owing to the good balance between proton conductivity and vanadium ion permeability. The discharge–capacity retentions of composite membranes also overwhelm that of Nafion 117 membrane after 200 cycles, indicating their good stability in VRFB system. These low-cost SPEEK/nano oxide composite membranes exhibit great potential for the application in VRFB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA (1986) New all-vanadium redox flow cell. J Electrochem Soc 133:1057–1058

    Article  CAS  Google Scholar 

  2. Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M (2011) Progress in flow battery research and development. J Electrochem Soc 158:R55–R79

    Article  CAS  Google Scholar 

  3. Yang ZG, Zhang JL, Kintner-Meyer MCW, Lu XC, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613

    Article  CAS  Google Scholar 

  4. Cheng FY, Liang J, Tao ZL, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715

    Article  CAS  Google Scholar 

  5. Li XF, Zhang HM, Mai ZS, Zhang HZ, Vankelecom I (2011) Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ Sci 4:1147–1160

    Article  CAS  Google Scholar 

  6. Leung PG, Li XH, Ponce de Leon C, Berlouis L, John Low C, Walsh FC (2012) Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv 2:10125–10156

    Article  CAS  Google Scholar 

  7. Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu QH (2011) Redox flow batteries: a review. J Appl Electrochem 41:1137–1164

    Article  CAS  Google Scholar 

  8. Xiao SB, Yu LH, Wu LT, Liu L, Qiu XP, Xi JY (2016) Broad temperature adaptability of vanadium redox flow battery—part 1: electrolyte research. Electrochim Acta 187:525–534

    Article  CAS  Google Scholar 

  9. Ding C, Zhang HM, Li XF, Liu T, Xing F (2013) Vanadium Flow Battery for Energy Storage: Prospects and Challenges. J Phys Chem Lett 4:1281–1294

    Article  CAS  Google Scholar 

  10. Chen DY, Li XF (2014) Sulfonated poly(ether ether ketone) membranes containing pendent carboxylic acid groups and their application in vanadium flow battery. J Power Sources 247:629–635

    Article  CAS  Google Scholar 

  11. Li ZH, Xi JY, Zhou HP, Liu L, Wu Z, Qiu XP, Chen LQ (2013) Preparation and characterization of sulfonated poly(ether ether ketone)/polyvinylidene fluoride blend membrane for vanadium redox flow battery application. J. Power Sources 237:132–140

    Article  CAS  Google Scholar 

  12. Teng XG, Dai JC, Su J (2015) Effects of different kinds of surfactants on Nafion membranes for all vanadium redox flow battery. J Solid State Electrochem 132:254–266

    Google Scholar 

  13. Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M (2013) Review of material research and development for vanadium redox flow battery applications. Electrochim Acta 101:27–40

    Article  CAS  Google Scholar 

  14. Liu L, Xi JY, Wu ZH, Zhang WG, Zhou HP, Li WB, Qiu XP (2012) State of charge monitoring for vanadium redox flow batteries by the transmission spectra of V(IV)/V(V) electrolytes. J Appl Electrochem 42:1025–1031

    Article  CAS  Google Scholar 

  15. Zhang WG, Xi JY, Li ZH, Zhou HP, Liu L, Wu ZH, Qiu XP (2013) Electrochemical activation of graphite felt electrode for VO2+/VO2 + redox couple application. Electrochim Acta 89:429–435

    Article  CAS  Google Scholar 

  16. Chen DY, Wang SJ, Xiao M, Meng YZ (2010) Preparation and properties of sulfonated poly(fluorenyl ether ketone) membrane for vanadium redox flow battery application. J Power Sources 195:2089–2095

    Article  CAS  Google Scholar 

  17. Chen DY, Wang SJ, Xiao M, Meng YZ (2010) Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery energy. Conversion and Management 51:2816–2864

    Article  CAS  Google Scholar 

  18. Prifti H, Parasuraman A, Winardi S, Lim TM, Skyllas-Kazacos M (2012) Membranes for redox flow battery applications. Membranes 2:275–306

    Article  CAS  Google Scholar 

  19. Li ZH, Dai WJ, Yu LH, Xi JY, Qiu XP, Chen LQ (2014) Sulfonated poly(ether ether ketone)/mesoporous silica hybrid membrane for high performance vanadium redox flow battery. J. Power Sources 257:221–229

    Article  CAS  Google Scholar 

  20. Chen DY, Wang SJ, Xiao M, Meng YZ (2010) Synthesis and characterization of novel sulfonated poly(arylene thioether) ionomers for vanadium redox flow battery applications. Energy Environ Sci 3:622–628

    Article  CAS  Google Scholar 

  21. Schwenzer B, Zhang JL, Kim S, Li LY, Liu J, Yang ZG (2011) Membrane development for vanadium redox flow batteries. ChemSusChem 4:1388–1406

    Article  CAS  Google Scholar 

  22. Chen DY, Wang SJ, Xiao M, Meng YZ (2011) Synthesis of sulfonated poly(fluorenyl ether thioether ketone)s with bulky-block structure and its application in vanadium redox flow battery. Polymer 52:5312–5319

    Article  CAS  Google Scholar 

  23. Zhang HZ, Ding C, Cao JY, Xu WX, Li XF, Zhang HM (2014) A novel solvent-template method to manufacture nano-scale porous membranes for vanadium flow battery applications. J Mater Chem A 2:9524–9531

    Article  CAS  Google Scholar 

  24. Xi JY, Wu ZH, Qiu XP, Chen LQ (2007) Nafion-SiO2 hybrid membrane for vanadium redox flow battery. J Power Sources 166:531–536

    Article  CAS  Google Scholar 

  25. Teng XG, Zhao YT, Xi JY, Wu ZH, Qiu XP, Chen LQ (2009) Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery. J Power Sources 189:1240–1246

    Article  CAS  Google Scholar 

  26. Wang NF, Peng S, Lu D, Liu SQ, Liu YN, Huang KL (2012) Nafion/TiO2 hybrid membrane fabricated via hydrothermal method for vanadium redox battery. J Solid State Electrochem 4:1577–1584

    Article  Google Scholar 

  27. Xi JY, Wu ZH, Teng XG, Zhao YT, Chen LQ, Qiu XP (2008) Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow battery. J Mater Chem 18:1232–1238

    Article  CAS  Google Scholar 

  28. Lu SF, Wu CX, Liang DW, Tan QL, Xiang Y (2014) Layer-by-layer self-assembly of Nafion-[CS-PWA] composite membranes with suppressed vanadium ion crossover for vanadium redox flow battery applications. RSC Adv 4:24831–24837

    Article  CAS  Google Scholar 

  29. Teng XG, Sun C, Dai JC, Liu HP, Su J, Li FQ (2013) Nafion/polytetrafluoroethylene membrane for vanadium redox flow battery application. Electrochim Acta 88:725–734

    Article  CAS  Google Scholar 

  30. Teng XG, Dai JC, Bi FY, Jiang XM, Song YQ, Yin GP (2015) Ultra-thin polytetrafluoroethene/Nafion/silica membranes prepared with nano SiO2 and its comparison with sol–gel derived one for vanadium redox flow battery. Solid State Ionics 280:30–36

    Article  CAS  Google Scholar 

  31. Minke C, Turek T (2015) Economics of vanadium redox flow battery membranes. J Power Sources 286:247–257

    Article  CAS  Google Scholar 

  32. Winardi S, Raghu SC, Oo MO, Yan QY, Wai N, Lim TM, Skyllas-Kazacos M (2014) Sulfonated poly (ether ether ketone)-based proton exchange membranes for vanadium redox battery applications. J Membr Sci 450:313–322

    Article  CAS  Google Scholar 

  33. Zhang SH, Zhang BG, Zhao GF, Jian XG (2014) Anion exchange membranes from brominated poly(aryl ether ketone) containing 3,5-dimethyl phthalazinone moieties for vanadium redox flow batteries. J Mater Chem A 2:3083–3091

    Article  CAS  Google Scholar 

  34. Liu S, Wang LH, Li D, Liu BQ, Wang JJ, Song YL (2015) Novel amphoteric ion exchange membranes by blending sulfonated poly(ether ether ketone)/quaternized poly(ether imide) for vanadium redox flow battery applications. J Mater Chem A 3:17590–17597

    Article  CAS  Google Scholar 

  35. Chen DY, Kim S, Sprenkle V, Hickner MA (2013) Composite blend polymer membranes with increased proton selectivity and lifetime for vanadium redox flow batteries. J Power Sources 231:301–306

    Article  CAS  Google Scholar 

  36. Wang NF, Yu JG, Zhou Z, Fang D, Liu SQ, Liu YN (2013) SPPEK/TPA composite membrane as a separator of vanadium redox flow battery. J Membr Sci 437:114–121

    Article  CAS  Google Scholar 

  37. Li ZH, Dai WJ, Yu LH, Liu L, Xi JY, Qiu XP, Chen LQ (2014) Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application. ACS Appl Mater Interfaces 6:18885–18893

    Article  CAS  Google Scholar 

  38. Zhou XL, Zhao TS, An L, Wei L, Zhang C (2015) The use of polybenzimidazole membranes in vanadium redox flow batteries leading to increased coulombic efficiency and cycling performance. Electrochim Acta 153:492–498

    Article  CAS  Google Scholar 

  39. Liu S, Wang LH, Ding Y, Liu BQ, Han XT, Song YL (2014) Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications. Electrochim Acta 130:90–96

    Article  CAS  Google Scholar 

  40. Li JC, Zhang YP, Wang L (2014) Preparation and characterization of sulfonated polyimide/TiO2 composite membrane for vanadium redox flow battery. J Solid State Electrochem 18:729–737

    Article  CAS  Google Scholar 

  41. Zhang HZ, Zhang HM, Li XF, Mai ZS, Wei WP (2012) Silica modified nanofiltration membranes with improved selectivity for redox flow battery application. Energy Environ Sci 5:6299–6303

    Article  CAS  Google Scholar 

  42. Kim S, Yan JL, Schwenzer B, Zhang JL, Li LY, Liu J, Yang ZG, Hickner MA (2010) Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries. Electrochem Commun 12:1650–1653

    Article  CAS  Google Scholar 

  43. Mai ZS, Zhang HM, Li XF, Bi C, Dai H (2011) Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application. J Power Sources 196:482–487

    Article  CAS  Google Scholar 

  44. Jung MJ, Parrondo J, Arges CG, Ramani V (2013) Polysulfone-based anion exchange membranes demonstrate excellent chemical stability and performance for the all-vanadium redox flow battery. J Mater Chem A 1:10458–10464

    Article  CAS  Google Scholar 

  45. Yun S, Parrondo J, Ramani V (2014) Derivatized cardo-polyetherketone anion exchange membranes for all-vanadium redox flow batteries. J Mater Chem A 2:6605–6615

    Article  CAS  Google Scholar 

  46. Dai WJ, Shen Y, Li ZH, Yu LH, Xi JY, Qiu XP (2014) SPEEK/graphene oxide nanocomposite membrane with superior cyclability for highly efficient vanadium redox flow battery. J Mater Chem A 2:12423–12432

    Article  CAS  Google Scholar 

  47. Xi JY, Li ZH, Yu LH, Yin BB, Wang L, Liu L, Qiu XP, Chen LQ (2015) Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery. J Power Sources 285:195–204

    Article  CAS  Google Scholar 

  48. Shen J, Xi JY, Zhu WT, Chen LQ, Qiu X (2006) A nanocomposite proton exchange membrane based on PVDF, poly(2-acrylamido-2-methyl propylene sulfonic acid), and nano-Al2O3 for direct methanol fuel cells. J Power Sources 159:894–899

    Article  CAS  Google Scholar 

  49. Shanmugam S, Viswanathan B, Varadarajan TK (2006) Synthesis and characterization of silicotungstic acid based organic–inorganic nanocomposite membrane. J Membr Sci 275:105–109

    Article  CAS  Google Scholar 

  50. Sambandam S, Ramani V (2007) SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells. J Power Sources 170:259–267

    Article  CAS  Google Scholar 

  51. Wu XM, He GH, Li XC, Nie F, Yan XM, Yu L, Benziger J (2014) Improving proton conductivity of sulfonated poly (ether ether ketone) proton exchange membranes at low humidity by semi-interpenetrating polymer networks preparation. J Power Sources 246:482–490

    Article  CAS  Google Scholar 

  52. Sukkar T, Skyllas-Kazacos M (2004) Membrane stability studies for vanadium redox cell applications. J Appl Electrochem 34:137–145

    Article  CAS  Google Scholar 

  53. Dai WJ, Yu LH, Li ZH, Yan J, Liu L, Xi JY, Qiu XP (2014) Sulfonated poly(ether ether ketone)/graphene composite membrane for vanadium redox flow battery. Electrochim Acta 132:200–207

    Article  CAS  Google Scholar 

  54. Kreuer K (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39

    Article  CAS  Google Scholar 

  55. Chen DY, Hickner MA, Agar E, Caglan Kumbur E (2013) Optimized anion exchange membranes for vanadium redox flow batteries. ACS Appl Mater Interfaces 5:7559–7566

    Article  CAS  Google Scholar 

  56. Maldonado L, Perrin J, Dillet J, Lottin O (2012) Characterization of polymer electrolyte Nafion membranes: influence of temperature, heat treatment and drying protocol on sorption and transport properties. J Membr Sci 389:43–56

    Article  CAS  Google Scholar 

  57. Zhang YP, Li JC, Wang L, Zhang S (2014) Sulfonated polyimide/AlOOH composite membranes with decreased vanadium permeability and increased stability for vanadium redox flow battery. J Solid State Electrochem 18:3479–3490

    Article  CAS  Google Scholar 

  58. Inan TY, Dogan H, Unveren EE, Eker E (2010) Sulfonated PEEK and fluorinated polymer based blends for fuel cell applications: investigation of the effect of type and molecular weight of the fluorinated polymers on the membrane’s properties. Int J Hydrog Energy 35:12038–12053

    Article  CAS  Google Scholar 

  59. Xing PX, Robertson GP, Guiver MD, Mikhailenko SD, Wang KP, Kaliaguine S (2004) Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. J Membr Sci 229:95–106

    Article  CAS  Google Scholar 

  60. Luo QT, Li LY, Nie ZM, Wang W, Wei XL, Li B, Chen BW (2012) In-situ investigation of vanadium ion transport in redox flow battery. J Power Sources 218:15–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21576154), Natural Science Foundation of Guangdong Province (2015A030313894), and Basic Research Project of Shenzhen City (JCYJ20130402145002403 and JCYJ20150331151358143).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wang or Jingyu Xi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, B., Yu, L., Jiang, B. et al. Nano oxides incorporated sulfonated poly(ether ether ketone) membranes with improved selectivity and stability for vanadium redox flow battery. J Solid State Electrochem 20, 1271–1283 (2016). https://doi.org/10.1007/s10008-016-3121-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3121-y

Keywords

Navigation