Skip to main content
Log in

The electrochemical properties of Ni3C carbide

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical properties of Ni3C was studied. In acidic sulfate solutions, the carbide is characterized by high overpotential of its oxidation as compared with nickel. In the case of carbide oxidation, the anodic reaction orders with respect to anions are low, indicating a weak dependence of the rate of the anodic process on the solution composition. Significant differences in the kinetics of the anodic processes indicate different mechanisms of the oxidation of nickel and its carbide. The rate and kinetic parameters of the hydrogen evolution reaction are comparable on Ni and Ni3C. In neutral and alkaline solutions, the metal and carbide samples were similar in their electrochemical characteristics. The anodically grown oxide film is thinner on nickel carbide than on nickel metal, and the oxide formed on the carbide is more readily reduced under cathodic polarization. This film is also more resistant to the pitting attack than the oxide film on nickel metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Toth LE (1971) Transition metal carbides and nitrides; refractory materials. Academic, New York

    Google Scholar 

  2. Oyama ST (ed) (1996) The chemistry of transition metal carbides and nitrides. Blackie Academic and Professional, Glasgow

    Google Scholar 

  3. Zhou W, Zheng K, He L, Wang R, Guo L, Chen C, Han X, Zhang Z (2008) Ni/Ni3C core-shell nanochains and its magnetic properties: one-step synthesis at low temperature. Nano Lett 8:1147–1152

    Article  CAS  Google Scholar 

  4. Yue L, Sabiryanov R, Kirkpatrick EM, Leslie-Pelecky DL (2000) Magnetic properties of disordered Ni3C. Phys Rev B 62:8969–8975

    Article  CAS  Google Scholar 

  5. Sedláčková K, Lobotka P, Vávra I, Radnóczi G (2005) Structural, electrical, and magnetic properties of carbon–nickel composite thin films. Carbon 43:2192–2198

    Article  Google Scholar 

  6. Sedláčková K, Grasin RO, Ujvári T, Bertóti I, Radnóczi G (2009) Carbon-metal (Ni or Ti) nanocomposite thin films for functional applications. Solid State Sci 11:1815–1818

    Article  Google Scholar 

  7. Brady CDA, Rees EJ, Burstein GT, Barber ZH (2008) Passivation and electrocatalytic behavior of an amorphous nickel–carbon film in sulfuric acid. J Electrochem Soc 155:B461–B466

    Article  CAS  Google Scholar 

  8. Fadil NA, Saravanan G, Ramesh GV, Matsumoto F, Yoshikawa H, Ueda S, Tanabe T, Hara T, Ishihara S, Murakami H, Ariga K, Abe H (2014) Synthesis and electrocatalytic performance of atomically ordered nickel carbide (Ni3C) nanoparticles. Chem Commun 50:6451–6453

    Article  CAS  Google Scholar 

  9. Ni L, Kuroda K, Zhou LP, Ohta K, Matsuishi K, Nakamura J (2009) Decomposition of metal carbides as an elementary step of carbon nanotube synthesis. Carbon 47:3054–3062

    Article  CAS  Google Scholar 

  10. Esconjauregui S, Whelan CM, Maex K (2009) The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon 47:659–669

    Article  CAS  Google Scholar 

  11. Yu B, Wang S, Zhang Q, He Y, Huang H, Zou J (2014) Ni3C-assisted growth of carbon nanofibres 300 °C by thermal CVD. Nanotechnology 25:325602

    Article  Google Scholar 

  12. Wang Z, Cao XM, Zhu J, Hu P (2014) Activity and coke formation of nickel and nickel carbide in dry reforming: a deactivation scheme from density functional theory. J Catal 311:469–480

    Article  CAS  Google Scholar 

  13. Zhang C, Yue H, Huang Z, Li S, Wu G, Ma X, Gong J (2013) Hydrogen production via steam reforming of ethanol on phyllosilicate-derived Ni/SiO2: enhanced metal-support interaction and catalytic stability. ACS Sustainable Chem Eng 1:161–173

    CAS  Google Scholar 

  14. Zefirov AP (ed) (1965) Termodinamicheskie svoistva neorganicheskikh vesh’estv. Spravochnik (Thermodynamic properties of inorganic compounds. Handbook) Atomizdat, Moscow

  15. Leng Y, Xie L, Liao F, Zheng J, Li X (2008) Kinetic and thermodynamics studies on the decompositions of Ni3C in different atmospheres. Thermochim Acta 473:14–18

    Article  CAS  Google Scholar 

  16. Borchers C, Ricardo P, Michaelsen C (2000) Interfacial wetting and percolation threshold in ultrathin Ni/C multilayer films. Philos Mag A 80:1669–1679

    Article  CAS  Google Scholar 

  17. Krawietz R, Wehner B, Sebald T, Mai H, Dietsch R (1994) Investigation of thermal aging of Ni/C multilayers by X-ray methods. Mater Sci Forum 166–169:1247–1253

    Google Scholar 

  18. Leslie-Pelecky DL, Zhang XQ, Kim SH, Bonder M, Rieke RD (1998) Structural properties of chemically synthesized nanostructured Ni and Ni:Ni3C nanocomposites. Chem Mater 10:164–171

    Article  CAS  Google Scholar 

  19. Ryabtsev SI, Bashev VF, Belkin AI, Ryabtsev AS (2006) Structure and properties of ion-plasma deposited Ni-C films in a metastable state. Phys Met Metallogr 102:305–308

    Article  Google Scholar 

  20. Tanaka T, Ishihara KN, Shingu PH (1992) Formation of metastable phases of Ni-C and Co-C systems by mechanical alloying. Metall Mater Trans A 23A:2431–2435

    Article  CAS  Google Scholar 

  21. Nishitani SR, Ishihara KN, Suzuki RO, Shingu PH (1985) Metastable solid solubility limit of carbon in the Ni–C system. J Mater Sci Lett 4:872–875

    Article  CAS  Google Scholar 

  22. Nagakura S (1958) Study of metallic carbides by electron diffraction. Part II crystal structure analysis of nickel carbide. J Phys Soc Jpn 13:1005–1014

    Article  CAS  Google Scholar 

  23. Tokumitsu K (1997) Synthesis of metastable Fe3C, Co3C and Ni3C by mechanical alloying method. Mater Sci Forum 235–238:127–132

    Article  Google Scholar 

  24. Goldschmidt HJ (1967) Interstitial alloys. Plenum, New York; Butterworths, London

  25. Ivanov VV, Zajats SV, Medvedev AI, Shtol’ts AK, Pereturina IA (2004) Formation of metal matrix composite by magnetic pulsed compaction of partially oxidized Al nanopowder. J Mater Sci 39:5231–5234

    Article  CAS  Google Scholar 

  26. Portnoi VK, Leonov AV, Mudretsova SN, Fedotov SA (2010) Formation of nickel carbide in the course of deformation treatment of Ni-C mixtures. Phys Met Metallogr 109:153–161

    Article  Google Scholar 

  27. Shelekhov EV, Sviridova TA (2000) Programs for x-ray analysis of polycrystals. Met Sci Heat Treat 42:309–313

    Article  CAS  Google Scholar 

  28. Powder Diffraction File, Alphabetical Index, Inorganic Phases (1985) International Center for Diffraction Data, Pennsylvania

  29. Nikolskiy BP (ed) (1965) Spravochnik khimika (Chemist Handbook). Khimiya, Leningrad

    Google Scholar 

  30. Lomayeva SF, Yelsukov EP, Konygin GN, Dorofeev GA, Povstugar VI, Mikhailova SS, Zagainov AV, Maratkanova AN (2000) The influence of a surfactant on the characteristics of the iron powders obtained by mechanical milling in organic media. Colloids Surf A 162:279–284

    Article  CAS  Google Scholar 

  31. Syugaev AV, Lomaeva SF, Maratkanova AN, Surnin DV, Reshetnikov SM (2009) Electrochemical properties of iron silicocarbide and cementite in acidic and neutral environments. Prot Met Phys Chem Surf 45:81–88

    Article  CAS  Google Scholar 

  32. Syugaev AV, Lyalina NV, Lomayeva SF, Maratkanova AN (2015) Electrochemical behavior of Co3C carbide. J Solid State Electrochem 19:2933–2941

    Article  CAS  Google Scholar 

  33. Weidman MC, Esposito DV, Hsu IJ, Chen JG (2010) Electrochemical stability of tungsten and tungsten monocarbide (WC) over wide pH and potential ranges. J Electrochem Soc 157:F179–F188

    Article  CAS  Google Scholar 

  34. Cowling RD, Hintermann HE (1970) The corrosion of titanium carbide. J Electrochem Soc 117:1447–1449

    Article  CAS  Google Scholar 

  35. Tarasevich MR (1984) Electrokhimia uglerodnikh materialov (Electrochemistry of carbon materials). Nauka, Moscow

    Google Scholar 

  36. Barbosa MR, Real SG, Vilche JR, Arvía AJ (1988) Comparative potentiodynamic study of nickel in still and stirred sulfuric acid-potassium sulfate solutions in the 0.4–5.7 pH range. J Electrochem Soc 35:1077–1085

    Article  Google Scholar 

  37. Juodkazis K, Juodkazytė J, Vilkauskaitė R, Jasulaitienė V (2008) Nickel surface anodic oxidation and electrocatalysis of oxygen evolution. J Solid State Electrochem 12:1469–1479

    Article  CAS  Google Scholar 

  38. Podobaev AN, Reformatskaya II (2006) Initial stages of nickel passivation and dissolution in acidic sulfate solutions. Prot Met 42:73–75

    Article  Google Scholar 

  39. Scherer J, Ocko BM, Magnussen OM (2003) Structure, dissolution, and passivation of Ni(111) electrodes in sulfuric acid solution: an in situ STM, x-ray scattering, and electrochemical study. Electrochim Acta 48:1169–1191

    Article  CAS  Google Scholar 

  40. Saraby-Reintjes A (1985) Theory of competitive adsorption and its application to the anodic dissolution of nickel and iron-group metals—I. Active dissolution in acid solution under steady state conditions. Electrochim Acta 30:387–401

    Article  CAS  Google Scholar 

  41. Florianovich GM, Sokolova LA, Kolotyrkin YM (1967) On the mechanism of the anodic dissolution of iron in acid solutions. Electrochim Acta 12:879–887

    Article  Google Scholar 

  42. Shein IR, Medvedeva NI, Ivanovskii AL (2006) Electronic and structural properties of cementite-type M3X (M = Fe, Co, Ni; X = C or B) by first principles calculations. Phys B 371:126–132

    Article  CAS  Google Scholar 

  43. Gassa LM, Vilche JR, Arvía AJ (1983) A potentiodynamic study of anodic film formation on nickel in borate solutions. J Appl Electrochem 13:135–145

    Article  CAS  Google Scholar 

  44. De Souza LMM, Kong FP, McLarnon FR, Muller RH (1997) Spectroscopic ellipsometry of nickel oxidation in alkaline solution. Electrochim Acta 42:1253–1267

    Article  Google Scholar 

  45. Kaesche H (2003) Corrosion of metals: physicochemical principles and current problems. Springer, Berlin

    Book  Google Scholar 

  46. Syugaev AV, Lyalina NV, Lomaeva SF, Reshetnikov SM (2012) Cathodic evolution of hydrogen on carbides of iron-family metals. Prot Met Phys Chem Surf 48:515–519

    Article  CAS  Google Scholar 

  47. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730

    Article  CAS  Google Scholar 

  48. Payne BP, Biesinger MC, McIntyre NS (2009) The study of polycrystalline nickel metal oxidation by water vapour. J Electron Spectrosc Relat Phenom 175:55–65

    Article  CAS  Google Scholar 

  49. Furlan A, Lu J, Hultman L, Jansson U, Magnuson M (2014) Crystallization characteristic and chemical properties of nickel carbide thin film nanocomposites. J Phys Condens Matter 26:415501

    Article  Google Scholar 

  50. Lascovich JC, Giorgi R, Scaglone S (1991) Evolution of the sp2/sp3 ratio in amorphous carbon structure by XPS and XAES. Appl Surf Sci 47:17–21

    Article  CAS  Google Scholar 

  51. Beamson G, Briggs D (1992) High resolution XPS of organic polymers. The Scienta ESCA300 Database. Wiley, New York

    Google Scholar 

  52. Schlögl R, Boehm HP (1983) Influence of crystalline perfection and surface species on the x-ray photoelectron spectra of natural and synthetic graphites. Carbon 21:345–358

    Article  Google Scholar 

  53. Chu PK, Li L (2006) Characterization of amorphous and nanocrystalline carbon films. Mater Chem Phys 96:253–277

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Foundation for Basic Research (no. 13-03-96099_ural_a). The authors thank S.V. Zayats (Institute of Electrophysics, UB RAS) for his assistance in compacting the samples and G.V. Sapozhnikov (PTI UB RAS) for the x-ray fluorescence analysis of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Syugaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syugaev, A.V., Lyalina, N.V., Lomayeva, S.F. et al. The electrochemical properties of Ni3C carbide. J Solid State Electrochem 20, 775–784 (2016). https://doi.org/10.1007/s10008-015-3108-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3108-0

Keywords

Navigation