Skip to main content
Log in

Enhanced photoelectrochemical performance of {001}TiO2/{001}SrTiO3 epitaxial heterostructures

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The anatase TiO2 films with controllable {001} highly reactive facets were fabricated on {001}SrTiO3 substrate with various total work pressure (TWP) by direct current facing-target magnetron sputtering (DCFTMS). X-ray diffraction (XRD), scanning electron microscopy (SEM), surface roughness tester (SRT), and X-ray photoelectron spectroscopy (XPS) were employed to confirmed the influence of different TWPs on the interface of TiO2/SrTiO3 heterostructured with epitaxial preferred growth of the anatase {001}TiO2 facet. The mechanisms of enhanced photoelectrochemical properties were explored by transient photocurrent (TP), current–potential (I–V), cyclic voltammetry (CV), polarization (Tafel), electrochemical impedance spectroscopy (EIS), and Mott–Schottky (M–S) curves, which can be ascribed to the formation of high-quality heterojunction between {001}TiO2 thin film and {001}SrTiO3 substrate, which suppress the recombination of photogenerated electron–hole pairs effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Cui L, Hui KN, Hui KS, Lee SK, Zhou W, Wan ZP (2012) Mater Lett 75:175–178

    Article  CAS  Google Scholar 

  2. Wang WJ, Shan CX, Zhu H, Ma FY, Shen DZ, Fan XW, Choy KL (2010) J Phys D-Applied Phys 43:045102

    Article  Google Scholar 

  3. Zou JP, Zhang Q, Huang K, Marzari N (2010) J Phys Chem C 114:10725–10729

    Article  CAS  Google Scholar 

  4. Zheng SJ, Fisher CAJ, Kato T (2012) Appl Phys Lett 101:191602

    Article  Google Scholar 

  5. Luo Q, Cai QZ, Li XW, Chen XD (2014) J Alloys Comp 597:101–109

    Article  CAS  Google Scholar 

  6. Jiao ZB, Chen T, Yu HC, Wang T (2014) J Colloid Interface Sci 419:95–101

    Article  CAS  Google Scholar 

  7. Boikov YA, Serenkov IT, Sakharov VI (2013) Europhys Lett 102:56003

    Article  Google Scholar 

  8. Min W, Min F, Xu Z (2014) Appl Surf Sci 292:475–479

    Article  Google Scholar 

  9. Momeni MM, Ghayeb Y, Davarzadeh M (2015) Surf Eng 31:259–264

    Article  CAS  Google Scholar 

  10. Kuo CG, Hsu CY, Wang SS (2012) Appl Surf Sci 258:6952–6957

    Article  CAS  Google Scholar 

  11. Subrahmanyam A, Biju KP, Rajesh P (2012) Sol Energy Mater Sol Cells 101:241–248

    Article  CAS  Google Scholar 

  12. Nguyen CK, Cha HG, Kang YS (2011) Cryst Growth Des 11:3947–3953

    Article  CAS  Google Scholar 

  13. Huang JR, Tan X, Yu T (2014) J Mater Chem A 2:9975–9981

    Article  CAS  Google Scholar 

  14. Sangbaek P, Sanghyeon K, Hae JK, Chan WL, Hee JS (2014) J Hazard Mater 275:10–18

    Article  Google Scholar 

  15. Zhang Y, Bu YY, Yu JQ, Li P (2013) J Nanopart Res 15:1717

    Article  Google Scholar 

  16. Wang Y, Cheng ZW, Tan SJ (2013) Surf Sci 616:93–99

    Article  CAS  Google Scholar 

  17. Murakami M, Matsumoto Y, Nakajima K (2001) Appl Phys Lett 78:2664

    Article  CAS  Google Scholar 

  18. Luo WB, Zhu J, Wu CG, Shuai Y, Zhang WL (2013) J Appl Phys 113:154103

    Article  Google Scholar 

  19. D’Amico NR, Cantele G, Ninno D (2012) Appl Phys Lett 101:141606

    Article  Google Scholar 

  20. Du Y, Kim DJ, KasPar TC (2012) Surf Sci 606:1443–1449

    Article  CAS  Google Scholar 

  21. Zhang J, Bang JH, Tang CC (2010) ACSNANO 4:387–395

    CAS  Google Scholar 

  22. Wei LJ, Guo JX, Ge DY (2013) J Alloys Comp 559:11–15

    Article  CAS  Google Scholar 

  23. Jiao ZB, Chen T, Xiong JY (2013) Sci Rep 3:2720

    Article  Google Scholar 

  24. Wang ZC, Sun R, Chen CL (2012) J Mater Sci 47:5148–5157

    Article  CAS  Google Scholar 

  25. Wang MC, Lin HJ, Wang CH (2012) Ceram Int 38:195–200

    Article  CAS  Google Scholar 

  26. Mazloom J, Ghodsi FE, Golmojdeh H (2015) Alloys Comp 639:393–399

    Article  CAS  Google Scholar 

  27. Herman GS, Gao Y (2001) Thin Solid Films 397:157–161

    Article  CAS  Google Scholar 

  28. Lotnyk A, Senz S, Hesse D (2007) Thin Solid Films 515:3439–3447

    Article  CAS  Google Scholar 

  29. Zhu YF, Xu L, Hu J, Zhang J, Du RG, Lin CJ (2014) Electrochim Acta 121:361–368

    Article  CAS  Google Scholar 

  30. Matuszak D, Aranovich GL, Donohue MD (2004) J Chem Phys 121:426

    Article  CAS  Google Scholar 

  31. Ruzimuradov O, Nurmanov S, Hojamberdiev M (2014) J Eur Ceram Soc 34:809–816

    Article  CAS  Google Scholar 

  32. Jiang FQ, Liu P, Yang X (2009) Adv Mater 21:3663–3667

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21406164, 21466035), the National Key Basic Research and Development Program of China (973 program, No. 2014CB239300, 2012CB720100), and the Natural Science Foundation of Tianjin (No.13JCQNJC05700). Research Fund for the Doctoral Program of Higher Education of China (20110032110037 and 20130032120019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yu.

Additional information

Qianqian Shang and Tao Yu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Q., Yu, T., Tan, X. et al. Enhanced photoelectrochemical performance of {001}TiO2/{001}SrTiO3 epitaxial heterostructures. J Solid State Electrochem 20, 123–132 (2016). https://doi.org/10.1007/s10008-015-2995-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2995-4

Keywords

Navigation