Skip to main content
Log in

Deposition of silver nanoparticles into silicon/carbon composite as a high-performance anode material for Li-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A silicon/silver/carbon (Si/Ag/C) composite with a core-core-shell structure has been synthesized via a simple method based on pyrolysis of an organic carbon source and silver mirror reaction. The Si and Ag nanoparticles are served as cores, while the porous amorphous carbon layer formed from pyrolysis of citric acid is served as shell. The porous amorphous carbon layer and highly conductive Ag nanoparticles can effectively alleviate the volume change of Si nanoparticles during lithiation/delithiation process and provide sufficient electrical conductivity for Si nanoparticles. As an anode material, the obtained Si/Ag/C composite exhibits excellent electrochemical performances, including high initial coulombic efficiency (85.6 % at 200 mA g−1), stable cycling performance (a discharge capacity of 2006.3 mA g−1 at 200 mA g−1 after 100 cycles), and excellent rate performance (a discharge capacity of 826.4 mA h g−1 at 3 A g−1). This simple method may open up an effective way to make other anode and cathode materials for commercial lithium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tarascon J-M, Armand M (2011) Nature 414:359–367

    Article  Google Scholar 

  2. Aricò AS, Bruce P, Scrosati B, Tarascon J-M, Schalkwijk WV (2005) Nat Mater 4:366–377

    Article  Google Scholar 

  3. Armand M, Tarascon J-M (2008) Nature 451:652–657

    Article  CAS  Google Scholar 

  4. Obrovac MN, Christensen L (2004) Electrochem Solid-State Lett 7:A93–A96

    Article  CAS  Google Scholar 

  5. Li J, Dahn JR (2007) J Electrochem Soc 154:A156–A161

    Article  CAS  Google Scholar 

  6. Kasavajjula U, Wang CS, Appleby AJ (2007) J Power Sources 163:1003–1039

    Article  CAS  Google Scholar 

  7. Aurbach D (2000) J Power Sources 89:206–218

    Article  CAS  Google Scholar 

  8. Ge MY, Rong JP, Fang X, Zhou CW (2012) Nano Lett 12:2318–2323

    Article  CAS  Google Scholar 

  9. Chan CK, Peng HL, Lìu G, Mcllwrath K, Zhang XF, Huggins RA, Cui Y (2008) Nat Nanotechnol 3:31–35

    Article  CAS  Google Scholar 

  10. Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J (2009) Nano Lett 9:3844–3847

    Article  CAS  Google Scholar 

  11. Lee JK, Smith KB, Hayner CM, Kung HH (2010) Chem Commun 46:2025–2027

    Article  CAS  Google Scholar 

  12. Si Q, Hanai K, Imanishi N, Kubo M, Hirano A, Takeda Y, Yamamoto O (2009) J Power Sources 189:761–765

    Article  CAS  Google Scholar 

  13. Wang MS, Fan LZ, Huang M, Li JH, Qu XH (2012) J Power Sources 219:29–35

    Article  CAS  Google Scholar 

  14. Shen XY, Mu DB, Chen S, Xu B, Wu BR, Wu F (2013) J Alloys Compd 552:60–64

    Article  CAS  Google Scholar 

  15. Kim JW, Ryu JH, Lee KT, Oh SM (2005) J Power Sources 147:227–233

    Article  CAS  Google Scholar 

  16. Wang F, Xu SH, Zhu SS, Peng H, Huang R, Wang LW, Xie XH, Chu PK (2013) Electrochim Acta 87:250–255

    Article  CAS  Google Scholar 

  17. Chen XL, Li XL, Ding F, Xu W, Xiao J, Cao YL, Meduri P, Liu J, Graff GL, Zhang JG (2012) Nano Lett 12:4124–4130

    Article  CAS  Google Scholar 

  18. Wang YX, Chou SL, Kim JH, Liu HK, Dou SX (2013) Electrochim Acta 93:213–221

    Article  CAS  Google Scholar 

  19. Li M, Hou XH, Sha YJ, Wang J, Hu SH, Liu X, Shao ZP (2014) J Power Sources 248:721–728

    Article  CAS  Google Scholar 

  20. Guo JC, Chen XL, Wang CS (2010) J Mater Chem 20:5035–5040

    Article  CAS  Google Scholar 

  21. Nanda J, Datta MK, Remilard JT, O’Neill A, Kumta PN (2009) Electrochem Commun 11:235–237

    Article  CAS  Google Scholar 

  22. Gu P, Cai R, Zhou YK, Shao ZP (2010) Electrochim Acta 55:3876–3883

    Article  CAS  Google Scholar 

  23. Li J, Ru Q, Hu SJ, Sun DW, Zhang BB, Hou XH (2013) Electrochim Acta 113:505–513

    Article  CAS  Google Scholar 

  24. Yuan T, Cai R, Shao ZP (2011) J Phys Chem C 115:4943–4952

    Article  CAS  Google Scholar 

  25. Lou XW, Archer LA, Yang ZC (2008) Adv Mater 20:3987–4019

    Article  CAS  Google Scholar 

  26. Zhang JJ, Huang T, Yu AS (2014) J Alloys Compd 606:61–67

    Article  CAS  Google Scholar 

  27. Wang Q, Li H, Chen LQ, Huang XJ (2011) Carbon 39:2211–2214

    Article  Google Scholar 

  28. Ge MY, Rong JP, Fang X, Zhang AY, Lu YH, Zhou CW (2013) Nano Res 6:174–181

    Article  CAS  Google Scholar 

  29. Obrovac MN, Krause LJ (2007) J Electrochem Soc 154:A103–A108

    Article  CAS  Google Scholar 

  30. Liu Y, Hanai K, Yang J, Imanishi N, Hirano A, Takeda Y (2004) Solid State Ionics 168:61–68

    Article  CAS  Google Scholar 

  31. Limthongkul P, YIL J, Dudney NJ, Chiang YM (2003) Acta Mater 51:1103–1113

    Article  CAS  Google Scholar 

  32. Ryu JH, Kim JW, Sung YE, Oh SM (2004) Electrochem Solid-State Lett 7:A306–A309

    Article  CAS  Google Scholar 

  33. Si Q, Hanai K, Ichikawa T, Hirano A, Imanishi N, Takeda Y, Yamamoto O (2010) J Power Sources 195:1720–1725

    Article  CAS  Google Scholar 

  34. Yeh TS, Wu YS, Lee YH (2012) J Alloys Compd 515:90–95

    Article  CAS  Google Scholar 

  35. de Guzman RC, Yang J, Cheng Cheng MM, Salley SO, Ng KYS (2014) J Power Sources 246:335–345

    Article  Google Scholar 

  36. Lee JI, Park S (2013) Nano Energy 2:146–152

    Article  CAS  Google Scholar 

  37. Yoo SM, Lee JI, Ko SH, Park SJ (2013) Nano Energy 2:1271–1278

    Article  CAS  Google Scholar 

  38. Li H, Huang XJ, Chen LQ, Zhou GW, Zhang Z, Yu DP, Mo YJ, Pei N (2000) Solid State Ionics 135:181–191

    Article  CAS  Google Scholar 

  39. Datta MK, Maranchi J, Chung SJ, Epur R, Kadakia K, Jampani P, Kumta PN (2011) Electrochim Acta 56:4717–4723

    Article  CAS  Google Scholar 

  40. Datta MK, Kumta PN (2009) J Power Sources 194:1043–1052

    Article  CAS  Google Scholar 

  41. Chen W, Fan ZL, Dhanabalan A, Chen CH, Wang CL (2011) J Electrochem Soc 158:A1055–A1059

    Article  CAS  Google Scholar 

  42. Zhang XN, Huang PX, Li GR, Yan TY, Pan GL, Gao XP (2007) Electrochem Commun 9:713–717

    Article  CAS  Google Scholar 

  43. Jiang T, Zhang SC, Qiu XP, Zhu WT, Chen LQ (2007) Electrochem Commun 9:930–934

    Article  CAS  Google Scholar 

  44. Wang XY, Wen ZY, Liu Y, Huang Y, Wen TL (2011) Solid State Ionics 192:330–334

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (NSFC, Nos. 51201066 and 51171065), Natural Science Foundation of Guangdong Province (Nos. S2012020010937 and 10351063101000001), and Foundation for Distinguished Young Talents in Higher Education of Guangdong (Nos. 2012LYM_0048).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miao Zhang or Shejun Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, X., Zhang, M., Wang, J. et al. Deposition of silver nanoparticles into silicon/carbon composite as a high-performance anode material for Li-ion batteries. J Solid State Electrochem 19, 3595–3604 (2015). https://doi.org/10.1007/s10008-015-2965-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2965-x

Keywords

Navigation