Skip to main content
Log in

DNA-binding studies of complex of Pt(bpy)(pip)]2+ and [Pt(bpy)(hpip)]2+ by electrochemical methods: development of an electrochemical DNA biosensor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical properties and deoxyribonucleic acid (DNA)-binding affinities of [Pt(bpy)(pip)]2+ (1) and [Pt(bpy)(hpip)]2+ (2) in homogeneous solution were studied. These platinum(II) complexes have shown to interact with DNA via intercalation mode. For the cyclic voltammetry (CV) experiments, since 2 leads to a larger decrease in the peak current and more positive shift in the peak potential in comparison to the analogous compound of 1, it could be noted that 2 exhibits higher intercalative binding affinity against DNA. The effect of ionic strength and competitive binding studies in the presence of ethidium bromide (EB) were also investigated by CV. Electrochemical DNA biosensor based on the immobilization of double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) probe and 1 and 2 onto electrochemically activated glassy carbon (GC) electrode was also achieved. The immobilization of dsDNA and ssDNA probe and hybridization were monitored by differential pulse voltammetry using 1 and 2 as hybridization indicators. It was found that both platinum complexes show larger and more evident electrochemical signals for the hybridized probe dsDNA with respect to ssDNA immobilized on GC electrode. The developed electrochemical DNA biosensor showed good selectivity and analytical performance for the complementary target nucleotide with limit of detection of 1.23 × 10−8 and 8.05 × 10−9 mol L−1 and limit of quantification of 4.06 × 10−7 and 2.66 × 10−8 for 1 and 2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gao F, Wang Q, Zheng M, Li S, Chen G, Jiao K (2011) Int J Electrochem Sci 6:1508–1521

    CAS  Google Scholar 

  2. Li G, Liu N, Liu S, Zhang S (2008) Electrochim Acta 53:2870–2876

    Article  CAS  Google Scholar 

  3. Palecek E, Fojta M (2001) Anal Chem 73:73A–83A

    Google Scholar 

  4. Arshad N, Farooqi SI, Bhatti MH, Saleem S, Mirza B (2013) J Photochem Photobiol B 125:70–82

    Article  CAS  Google Scholar 

  5. Wang Q, Wang X, Yu Z, Yuan X, Jiao K (2011) Int J Electrochem Sci 6:5470–5481

    CAS  Google Scholar 

  6. Kelly J, Tossi A, McConnell D, Uigin O (1985) Nucleic Acids Res 13:6017–6034

    Article  CAS  Google Scholar 

  7. Li F, Chen W, Tang C, Zhang S (2008) Talanta 77:1–8

    Article  CAS  Google Scholar 

  8. Maheswari PU, Rajendiran V, Stoeckli-Evans H, Palaniandavar M (2006) Inorg Chem 45:37–50

    Article  CAS  Google Scholar 

  9. Gaudry E, Aubard J, Amouri H, Lévi G, Cordier C (2006) Biopolymers 82:399–404

    Article  CAS  Google Scholar 

  10. Zhou CY, Zhao J, Wu YB, Yin CX, Pin Y (2007) J Inorg Biochem 101:10–18

    Article  CAS  Google Scholar 

  11. Xu G, Fan J, Jiao K (2008) Electroanalysis 20:1209–1214

    Article  CAS  Google Scholar 

  12. Niu S, Li F, Zhang S, Wang L, Li X, Wang S (2006) Sensors 6:1234–1244

    Article  CAS  Google Scholar 

  13. Del Pozo MV, Alonso C, Pariente F, Lorenzo E (2005) Biosens Bioelectron 20:1549–1558

    Article  Google Scholar 

  14. Del Pozo MV, Alonso C, Pariente F, Lorenzo E (2005) Anal Chem 77:2550–2557

    Article  Google Scholar 

  15. Guin PS, Das P, Das S, Mandal PC (2012) Int J Electrochem 2012:1–10

    Article  Google Scholar 

  16. Wang QX, Jiao K, Sun W, Jian FF, Hu X (2006) Eur J Inorg Chem 2006:1838–1845

    Article  Google Scholar 

  17. Daniel S, Rao TP, Rao KS, Rani SU, Naidu GRK, Lee HY, Kawai T (2007) Sensors Actuators B Chem 122:672–682

    Article  CAS  Google Scholar 

  18. Wang L, Wang X, Chen X, Liu J, Liu S, Zhao C (2012) Bioelectrochemistry 88:30–35

    Article  CAS  Google Scholar 

  19. Guo M, Chen J, Liu D, Nie L, Yao S (2004) Bioelectrochemistry 62:29–35

    Article  CAS  Google Scholar 

  20. Rafique B, Khalid AM, Akhtar K, Jabbar A (2013) Biosens Bioelectron 44:21–26

    Article  CAS  Google Scholar 

  21. Wang SM, Su WY, Cheng SH (2010) Int J Electrochem Sci 5:1649

    CAS  Google Scholar 

  22. Li XM, Ju HQ, Ding CF, Zhang SS (2007) Anal Chim Acta 582:158–163

    Article  CAS  Google Scholar 

  23. Coban B, Yildiz U (2014) Appl Biochem Biotechnol 172:248–262

    Article  CAS  Google Scholar 

  24. Chen H, Dou C, Wu Y, Li H, Xi X, Yang P (2009) J Inorg Biochem 103:827–832

    Article  CAS  Google Scholar 

  25. Maheswari PU, Palaniandavar MJ (2004) J Inorg Biochem 98:219–230

    Article  Google Scholar 

  26. Zhang QL, Liu JG, Liu J, Xue GQ, Li H, Liu JZ, Zhou H, Qu LH, Ji LN (2001) J Inorg Biochem 85:291–296

    Article  CAS  Google Scholar 

  27. Coban B, Yildiz U, Şengul A (2013) J Biol Inorg Chem 18:461–471

    Article  CAS  Google Scholar 

  28. Cusumano M, Di Pietro ML, Giannetto A (2006) Inorg Chem 45:230–235

    Article  CAS  Google Scholar 

  29. Niu SY, Zhang SS, Wang L, Li XM (2006) J Electroanal Chem 597:111–118

    Article  CAS  Google Scholar 

  30. Wang J, Cai X, Rivas G, Shiraishi H, Farias PAM, Dontha N (2007) Anal Chem 68:2629–2634

    Article  Google Scholar 

  31. Liu X-W, Lu J-L, Chen Y-D, Li L, D-S Z (2011) Inorg Chim Acta 379:1–6

    Article  CAS  Google Scholar 

  32. Janjua NK, Akhter Z, Jabeen F, Iftikhar B (2014) J t Korean Chem Soc 53:153–159

    Article  Google Scholar 

  33. Noorbakhsh A, Salimi A (2011) Biosens Bioelectron 30:188–196

    Article  CAS  Google Scholar 

  34. Shujhaa S, Shaha A, Rehmana Z, Muhammada N, Alia S, Qureshia R, Khalid N, Meetsma A (2010) Eur J Med Chem 45:2902–2911

    Article  Google Scholar 

  35. Sirajuddin M, Ali S, Badshah A (2013) J Photochem Photobiol B 124:1–19

    Article  CAS  Google Scholar 

  36. Lu X, Zhang M, Kang J, Wang X, Zhuo L, Liu H (2004) J Inorg Biochem 98:582–588

    Article  CAS  Google Scholar 

  37. Hajian R, Shams N, Mohagheghian M (2009) J Braz Chem Soc 20:1399–1405

    Article  CAS  Google Scholar 

  38. Nia Y, Lina D, Kokot S (2006) Anal Biochem 352:231–242

    Article  Google Scholar 

  39. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  40. Laviron E (1979) J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by The Scientific and Technological Research Council of Turkey. Authors also thank Assistant Professor M. Emre HANHAN for his research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izzet Kocak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocak, I., Yildiz, U., Coban, B. et al. DNA-binding studies of complex of Pt(bpy)(pip)]2+ and [Pt(bpy)(hpip)]2+ by electrochemical methods: development of an electrochemical DNA biosensor. J Solid State Electrochem 19, 2189–2197 (2015). https://doi.org/10.1007/s10008-015-2859-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2859-y

Keywords

Navigation