Skip to main content

Advertisement

Log in

Effect of carbon fiber length and graphene on carbon-polymer composite bipolar plate for PEMFC

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon-polymer composite bipolar plate is developed using novolac phenol formaldehyde resin as the polymer matrix and natural graphite, carbon black, carbon fiber, and graphene as conductive reinforcements by compression molding technique. The developed bipolar plates are characterized using electrical conductivity, flexural strength, deflection at mid-span, interfacial electrical contact resistance, and corrosion current density in simulated polymer electrolyte membrane fuel cell environment (1 M H2SO4 + 2 ppm HF at 80 °C with hydrogen and oxygen purging). The effect of carbon fiber length and graphene content is studied with an overall aim to achieve the desired properties as per the stringent target properties chosen out of US-DOE and Plug Power Inc. The optimized composition of the bipolar plate is tested in a single cell polymer electrolyte membrane fuel cell set up. The optimum carbon fiber length and graphene content are found to be 1 mm and 1.5 %, respectively. The anodic and cathodic corrosion current densities are within the stringent target. Moreover, the incorporation of graphene improved the fuel cell performance significantly (13 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Vishnyakov VM (2006) Vacuum 80(10):1053–1065

    Article  CAS  Google Scholar 

  2. Hwang IU, Yu HN, Kim SS, Lee DG, Suh JD, Lee SH, Ahn BK, Kim SH, Lim TW (2008) J Power Sources 184(1):90–94

    Article  CAS  Google Scholar 

  3. Wang H, Turner JA (2010) Fuel Cells 10(4):510–519

    Article  CAS  Google Scholar 

  4. US-DoE (2012) http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf. Accessed 30 Nov 2013

  5. Hui C, Hong-bo L, Li Y, Jian-xin L (2010) Int J Hydrogen Energ 35(7):3105–3109

    Article  Google Scholar 

  6. Huang J, Baird DG, McGrath JE (2005) J Power Sources 150:110–119

    Article  CAS  Google Scholar 

  7. Blunk R, Abd Elhamid MH, Lisi D, Mikhail Y (2006) J Power Sources 156(2):151–157

    Article  CAS  Google Scholar 

  8. Kakati BK, Sathiyamoorthy D, Verma A (2010) Int J Hydrogen Energ 35(9):4185–4194

    Article  CAS  Google Scholar 

  9. Sohi NJS, Bhadra S, Khastgir D (2011) Carbon 49(4):1349–1361

    Article  CAS  Google Scholar 

  10. Taherian R, Golikand AN, Hadianfard MJ (2011) Mater Design 32(7):3883–3892

  11. Tjong SC (2011) Energy Environ Sci 4:605–626

    Article  CAS  Google Scholar 

  12. Allaoui A, Bai S, Cheng HM, Bai JB (2002) Compos Sci Technol 62(15):1993–1998

    Article  CAS  Google Scholar 

  13. Antunes RA, de Oliveira MCL, Ett G, Ett V (2011) J Power Sources 196(6):2945–2961

    Article  CAS  Google Scholar 

  14. Guo N, Leu MC (2012) Int J Hydrogen Energ 37(4):3558–3566

    Article  CAS  Google Scholar 

  15. Lee JH, Jang YK, Hong CE, Kim NH, Li P, Lee HK (2009) J Power Sources 193(2):523–529

    Article  CAS  Google Scholar 

  16. Kakati BK, Ghosh A, Verma A (2013) Int J Hydrogen Energy 38(22):9362–9369

    Article  CAS  Google Scholar 

  17. Hsiao M-C, Liao S-H, Yen M-Y, Teng C-C, Lee S-H, Pu N-W, Wang C-A, Sung Y, Ger M-D, Ma C-CM, Hsiao M-H (2010) J Mater Chem 20(39):8496–8505

    Article  CAS  Google Scholar 

  18. Geim AK (2009) Science 324(5934):1530–1534

    Article  CAS  Google Scholar 

  19. Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Xa C, Huang S (2011) ACS. Nano 6(1):205–211

    Article  CAS  Google Scholar 

  20. Yoo E, Okada T, Akita T, Kohyama M, Honma I, Nakamura J (2011) J Power Sources 196(1):110–115

    Article  CAS  Google Scholar 

  21. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) Prog Polym Sci 36(5):638–670

    Article  CAS  Google Scholar 

  22. Ghosh A, Basu S, Verma A (2013) Fuel Cells 13(3):355–363

    Article  CAS  Google Scholar 

  23. Knop A, Pilato L (1985) Phenolic resin. Springer Verlag, Berlin

    Book  Google Scholar 

  24. Avasarala B, Haldar P (2009) J Power Sources 188(1):225–229

    Article  CAS  Google Scholar 

  25. Bong S, Kim Y-R, Kim I, Woo S, Uhm S, Lee J, Kim H (2010) Electrochem Commun 12(1):129–131

    Article  CAS  Google Scholar 

  26. Kakati BK, Verma A (2011) Carbon-polymer composite bipolar plate for PEM fuel cell: Development, characterization and performance evaluation. LAP Lambert Academic Publishing, Germany

    Google Scholar 

  27. Ramanathan T, Abdala AA, Dikin DASS, Herrera Alonso M, Piner RD, Adamson DH, Schniepp HC, ChenX RRS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Nat Nano 3(6):327–331

    Article  CAS  Google Scholar 

  28. Brownson DAC, Kampouris DK, Banks CE (2011) J Power Sources 196(11):4873–4885

    Article  CAS  Google Scholar 

  29. Oliveira MCL, Ett G, Antunes RA (2013) J Power Sources 221:345–355

    Article  Google Scholar 

  30. Taherian R, Golikand AN, Hadianfard MJ (2012) ECS J Solid State Sci Technol 1:M39–M46

    Article  CAS  Google Scholar 

  31. Wang YM, Wang WQ, Li AJ (2012) Appl Mech Mater 109:105–109. doi:10.4028/www.scientific.net/AMM.109.105

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support given for this work by the Council of Scientific and Industrial Research, CSIR, New Delhi, (Sanction number: 22 (0498)/10/EMR-II), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Goswami, P., Mahanta, P. et al. Effect of carbon fiber length and graphene on carbon-polymer composite bipolar plate for PEMFC. J Solid State Electrochem 18, 3427–3436 (2014). https://doi.org/10.1007/s10008-014-2573-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2573-1

Keywords

Navigation