Skip to main content
Log in

Low-temperature behavior of Li3V2(PO4)3/C as cathode material for lithium ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical performance of Li3V2(PO4)3/C was investigated at various low temperatures in the electrolyte 1.0 mol dm−3 LiPF6/ethyl carbonate (EC)+diethyl carbonate (DEC)+dimethyl carbonate (DMC) (volume ratio 1:1:1). The stable specific discharge capacity is 125.4, 122.6, 119.3, 116.6, 111.4, and 105.7 mAh g−1 at 26, 10, 0, −10, −20, and −30 °C, respectively, in the voltage range of 2.3–4.5 V at 0.2 C rate. When the temperature decreases from −30 to −40 °C, there is a rapid decline in the capacity from 105.7 to 69.5 mAh g−1, implying that there is a nonlinear relationship between the performance and temperature. With temperature decreasing, R ct (corresponding to charge transfer resistance) increases rapidly, D (the lithium ion diffusion coefficients) decreases sharply, and the performance of electrolyte degenerates obviously, illustrating that the low-temperature electrochemical performance of Li3V2(PO4)3/C is mainly limited by R ct, D Li, and electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Higuchi M, Katayama K, Azuma Y, Yukawa M, Suhara M (2003) J Power Sources 258:119–121

    Google Scholar 

  2. Yamada A, Chung SC, Hinokuma K (2001) J Electrochem Soc 148:A224–A229

    Article  CAS  Google Scholar 

  3. Chung SY, Bloking JT, Chiang YM (2002) Nat Mater 1:123–128

    Article  CAS  Google Scholar 

  4. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  5. Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) J Electrochem Soc 144:1609–1613

    Article  CAS  Google Scholar 

  6. Delacourt C, Poizot P, Tarascon JM, Masquelier C (2005) Nat Mater 4:254–260

    Article  CAS  Google Scholar 

  7. Thackeray M (2002) Nat Mater 1:81–82

    Article  CAS  Google Scholar 

  8. Huang H, Yin SC, Kerr T, Taylor N, Nazar LF (2002) Adv Mater 14:1525–1528

    Article  CAS  Google Scholar 

  9. Saidi MY, Barker J, Huang H, Swoyer JL, Adamson G (2003) J Power Sources 266:119–121

    Google Scholar 

  10. Yin SC, Grondey H, Strobel P, Anne M, Nazar LF (2003) J Am Chem Soc 125:10402–10411

    Article  CAS  Google Scholar 

  11. Yin SC, Grondey H, Strobel P, Huang H, Nazar LF (2003) J Am Chem Soc 125:326–327

    Article  CAS  Google Scholar 

  12. Yin SC, Strobel PS, Grondey H, Nazar LF (2004) Chem Mater 16:1456–1465

    Article  CAS  Google Scholar 

  13. Chen Z, Dahn JR (2002) J Electrochem Soc 149:A1184–A1189

    Article  CAS  Google Scholar 

  14. Belharouak I, Johnson C, Amine K (2005) Electrochem Commun 7:983–988

    Article  CAS  Google Scholar 

  15. Hua N, Wang CY, Kang XY, Wumair T, Han Y (2010) J Alloys Compd 503:204–208

    Article  CAS  Google Scholar 

  16. Li CF, Hua N, Wang CY, Kang XY, Wumair T, Han Y (2011) J Solid State Electrochem 15:1971–1976

    Article  CAS  Google Scholar 

  17. Li CF, Hua N, Wang CY, Kang XY, Wumair T, Han Y (2011) J Alloys Compd 509:1897–1900

    Article  CAS  Google Scholar 

  18. Rui XH, Li C, Liu J, Cheng T, Chen CH (2010) Electrochim Acta 55:6761–6767

    Article  CAS  Google Scholar 

  19. Yuan AB, Zhao J (2006) Electrochim Acta 51:2454–2462

    Article  CAS  Google Scholar 

  20. Shin HC, Cho WI, Jang H (2006) J Power Sources 159:1383–1388

    Article  CAS  Google Scholar 

  21. Li YZ, Zhou Z, Gao XP, Yan J (2007) Electrochim Acta 52:4922–4926

    Article  CAS  Google Scholar 

  22. Zhang SS, Xu K, Jow TR (2004) Electrochim Acta 49:1057–1061

    Article  CAS  Google Scholar 

  23. Ratnakumar BV, Smart MC, Surampudi S (2001) J Power Sources 97–98:137–139

    Article  Google Scholar 

  24. Wang CS, Appleby AJ, Little FE (2002) J Electrochem Soc 149:A754–A760

    Article  CAS  Google Scholar 

  25. Gao F, Tang ZY (2008) Electrochim Acta 53:5071–5075

    Article  CAS  Google Scholar 

  26. Liu H, Li C, Zhang HP, Fu LJ, Wu YP, Wu HQ (2006) J Power Sources 159:717–720

    Article  CAS  Google Scholar 

  27. Wang XY, Zhu QA, Zhang YS, Yuan HT, Yan J, Song DY (1999) Chin J Power Sources 23:335–338

    CAS  Google Scholar 

  28. Zhang SS, Xu K, Jow TR (2006) J Power Sources 159:702–707

    Article  CAS  Google Scholar 

  29. Aurbach D (2000) J Power Sources 89:206–218

    Article  CAS  Google Scholar 

  30. Rui XH, Jin Y, Feng XY (2011) J Power Sources 196:2109–2114

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support of the Knowledge Innovation Project of the Chinese Academy of Sciences (No. 20092A401), the West Light Foundation of the Chinese Academy of Sciences (No. XB200919) and the science and technology projects of Urumqi (No. K111410005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueya Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Kang, X., Li, C. et al. Low-temperature behavior of Li3V2(PO4)3/C as cathode material for lithium ion batteries. J Solid State Electrochem 16, 1917–1923 (2012). https://doi.org/10.1007/s10008-011-1584-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1584-4

Keywords

Navigation