Skip to main content

Advertisement

Log in

Structural, electronic, optical, and thermodynamic properties of hydrochlorinated Janus graphene: a first-principle study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structural, electronic, optical, and thermodynamic properties of hydrochlorinated Janus graphene (J-GN) have been studied using first-principle DFT calculations. The band structure and density of states have been discussed. The values of 16 parameters have been calculated for the most stable chair (C) structure of hydrochlorinated J-GN. Out of sixteen, 12 parameters such as static dielectric constant ε(0), refractive index n(0), birefringence Δn(0), threshold conductivity σ(ω), plasmon energy (ћωp), binding energy (Eb), cohesive energy (Ec), enthalpy (E), entropy (S), free energy (F), heat capacity (Cp), and Debye temperature (ΘD) have been calculated for the first time. The structural and electronic properties have also been studied at 0-GPa, 25-GPa, 35-GPa, 50-GPa, 90-GPa, 100-GPa, 150-GPa, 200-GPa, and 220-GPa external pressures. The hydrochlorinated J-GN shows the direct band gap behavior up to 35 GPa and becomes indirect band gap after 35 GPa. Further, it shows a stable structure up to 90 GPa and becomes unstable at 100-GPa external pressure. The calculated values of all parameters agree well with the available reported values of some parameters at 0 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P (2010). Science 327:662

    Article  CAS  Google Scholar 

  2. Ma Y, Dai Y, Guo M, Huang B (2012). Phys Rev B 85:235448

    Article  Google Scholar 

  3. Ma Y, Dai Y, Guo M, Niu C, Zhu Y, Huang B (2012). ACS Nano 6:1695–1701

    Article  CAS  Google Scholar 

  4. Kim SY, Park HS (2010). Nanotechnology 21(1-8):105710

    Article  Google Scholar 

  5. Ma Y, Dai Y, Wei W, Niu C, Yu L, Huang B (2011). J Phys Chem C 115:20237–20241

    Article  CAS  Google Scholar 

  6. Bonaccorso S, Sun Z, Hasan T, Ferrari AC (2010). Nat Photonics 4:611–622

    Article  CAS  Google Scholar 

  7. Marinopoulos AG, Reining L, Rubio A, Olevano V (2004). Phys Rev B 69:245419

    Article  Google Scholar 

  8. Yuanbo Z, Tsung-Ta T, Girit C, Zhao H, Martin MC, Zettl A, Crommie MF, Shen YR, Feng W (2009). Nature 459:820–823

    Article  Google Scholar 

  9. Castro EV, Novoselov KS, Morozov SV, Peres NMR, Dos Santos J, Nilsson J, Guinea F, Geim AK, Neto AHC (2007). Phys Rev Lett 99:216802

    Article  Google Scholar 

  10. Sofo JO, Chaudhari AS, Barber GD (2007). Phys Rev B 75:153401

    Article  Google Scholar 

  11. Cadelano E, Palla PL, Giordano S, Colombo L (2010). Phys Rev B 82:235414

    Article  Google Scholar 

  12. Leenaerts O, Peelaers H, Hernandez-Nieves AD, Partoens B, Peeters FM (2010). Phys Rev B 82:195436

    Article  Google Scholar 

  13. Jia-An Y, Lede X, Chou MY (2009). Phys Rev Lett 103:086802

    Article  Google Scholar 

  14. Nath P, Chowdhury S, Sanyal D, Jana D (2014). Carbon 73:275–282

    Article  CAS  Google Scholar 

  15. Klintenberg M, Lebègue S, Katsnelson MI, Eriksson O (2010). Phys Rev B 81:085433

    Article  Google Scholar 

  16. Singh R, Bester G (2011). Phys Rev B 84:155427

    Article  Google Scholar 

  17. Nair RR, Ren WC, Jalil R, Riaz I, Kravets VG, Britnell L, Blake P, Schedin F, Mayorov AS, Yuan S, Katsnelson MI, Cheng HM, Strupinski W, Bulusheva LG, Okotrub AV, Grigorieva IV, Grigorenko AN, Novoselov KS, Geim AK (2010). Small 6:2877–2884

    Article  CAS  Google Scholar 

  18. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009). Science 323:610–613

    Article  CAS  Google Scholar 

  19. Karlicky F, Zboril R, Otyepka M (2012). J Chem Phys 137:034709

    Article  Google Scholar 

  20. Karlicky F, Turon J (2018). Carbon 135:134–144

    Article  CAS  Google Scholar 

  21. Jin Y, Xue Q, Zhu L, Li X, Pan X, Zhang J, Xing W, Wu T, Liu Z (2016). Sci Rep 6:26914

    Article  CAS  Google Scholar 

  22. Kumar V, Santosh R, Chandra S (2017). Mater Sci Eng B 226:64–71

    Article  CAS  Google Scholar 

  23. Santosh R, Kumar V (2019). Solid State Sci 94:70–76

    Article  Google Scholar 

  24. Santosh R, Kumar V (2019). J Comput Electron. 18:770–778 https://doi.org/10.1007/s10825-019-01347-x

    Article  CAS  Google Scholar 

  25. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clarck SJ, Payne MC (2002). J Phys Cond Mat. 14:2717–2744

  26. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  27. Vanderbilt D (1990). Phys Rev B 41:7892–7895

    Article  CAS  Google Scholar 

  28. Fischer TH, Almlof J (1992). J Phys Chem 96:9768–9774

    Article  CAS  Google Scholar 

  29. Segall MD, Shah R, Pickard CJ, Payne MC (1996). Phys Rev B 54:16317–16320

    Article  CAS  Google Scholar 

  30. Wen X, Hand L, Labet V, Yang T, Hoffmann R, Ashcroft NW, Oganov AR, Lyakhov AO (2011). PNAS 108:6833–6837

    Article  CAS  Google Scholar 

  31. Zijlstra P, Orrit M, Koenderink AF (2014) Springer Heidelberg New York Dordrecht London. https://doi.org/10.1007/978-3-662-44823-6

    Google Scholar 

  32. Momida H, Hamada T, Takagi Y, Yamamoto T, Uda T, Ohno T (2007). Phys Rev B 75:195105

    Article  Google Scholar 

  33. Tributsch H (1977). Naturforsch A 32A:972–985

    CAS  Google Scholar 

  34. John R, Merlin B (2017). J Phys Chem Solids 110:307

    Article  CAS  Google Scholar 

  35. Rani P, Dubey GS, Jindal VK (2014). Phys E 62:28–35

    Article  CAS  Google Scholar 

  36. Mohan B, Kumar A, Ahluwalia PK (2012). Phys E 44:1670–1674

    Article  CAS  Google Scholar 

  37. Sedelnikova OV, Bulusheva LG, Okotrub AV (2011). J Chem Phys 134:244707

    Article  CAS  Google Scholar 

  38. Baroni S, Gironcoli SD, Corso AD, Giannozzi P (2001). Rev Mod Phys 73:515–562

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Prof. Rajiv Shekhar, Director, IIT(ISM), Dhanbad for his continuous encouragement throughout this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kumar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santosh, R., Kumar, V. Structural, electronic, optical, and thermodynamic properties of hydrochlorinated Janus graphene: a first-principle study. J Mol Model 25, 296 (2019). https://doi.org/10.1007/s00894-019-4187-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4187-0

Keywords

Navigation