Skip to main content
Log in

Acrylic acid hydrodeoxygenation reaction mechanism over molybdenum carbide studied by DFT calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Platinum- and palladium-based catalysts are commonly used in hydrogenation reactions, but they present a great disadvantage of being quite expensive. In most cases, they can be substituted by cheaper alternative catalysts formed by transition metal carbides, such as molybdenum carbide (Mo2C). Among the reactions that can be catalyzed by Mo2C, hydrodeoxygenation (HDO) presents a great technological interest, especially in biofuel production. Nonetheless, the selectivity of carbides in HDO reactions of fatty acids is not well understood yet. In the present work, the reaction mechanism of the acrylic acid HDO over Mo2C, a fatty acid model molecule, was studied by density functional theory (DFT), with Perdew-Burke-Ernzerhof (PBE) functional and periodic boundary conditions. A global mechanism is proposed, divided in four steps, from acrylic acid to propane. In the first reaction step, decomposition by C–OH bond cleavage, with 24 kcal mol− 1 of activation energy, dominates over C=C and C=O hydrogenation. This result is in line with the absence of propanoic acid among the products and the formation of acrolein, as shown in an experimental work previously published. The proposed global mechanism is in fair agreement with the experimental findings. The main product is propane, which has the same number of carbon atoms of the reactant. This mechanism can be viewed as a model for HDO of any fatty acid catalyzed by Mo2C, since acrylic acid has the minimal structural features of fatty acids, i.e., a carboxyl group and a C=C double bond.

HDO over Mo2C provides a product with same carbon atoms number of the reactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oyama S (1992) Preparation and catalytic properties of transition metal carbides and nitrides. Catal Today 15(2):179–200. https://doi.org/10.1016/0920-5861(92)80175-M. http://www.sciencedirect.com/science/article/pii/092058619280175M. http://linkinghub.elsevier.com/retrieve/pii/092058619280175M

    Article  CAS  Google Scholar 

  2. Sullivan MM, Bhan A (2016) Acetone hydrodeoxygenation over bifunctional metallic–acidic molybdenum carbide catalysts. ACS Catal 6(2):1145–1152. https://doi.org/10.1021/acscatal.5b02656

    Article  CAS  Google Scholar 

  3. Rocha A, Rocha A, da Silva VT (2010) Benzene adsorption on Mo2C: a theoretical and experimental study. Appl Catal A Gen 379(1-2):54–60. https://doi.org/10.1016/j.apcata.2010.02.032. https://linkinghub.elsevier.com/retrieve/pii/S0926860X10001584

    Article  CAS  Google Scholar 

  4. Flaherty DW, Berglund SP, Mullins CB (2010) Selective decomposition of formic acid on molybdenum carbide: a new reaction pathway. J Catal 269(1):33–43. https://doi.org/10.1016/j.jcat.2009.10.012. http://linkinghub.elsevier.com/retrieve/pii/S0021951709003455

    Article  CAS  Google Scholar 

  5. Sullivan MM, Chen CJ, Bhan A (2016) Catalytic deoxygenation on transition metal carbide catalysts. Cat Sci Technol 6(3):602–616. https://doi.org/10.1039/C5CY01665G

    Article  CAS  Google Scholar 

  6. Xiong K, Yu W, Vlachos DG, Chen JG (2015) Reaction pathways of biomass-derived oxygenates over metals and carbides: from model surfaces to supported catalysts. ChemCatChem 7(9):1402–1421. https://doi.org/10.1002/cctc.201403067

    Article  CAS  Google Scholar 

  7. Sousa L, Zotin J, Teixeira da Silva V (2012) Hydrotreatment of sunflower oil using supported molybdenum carbide. Appl Catal A Gen 449:105–111. https://doi.org/10.1016/j.apcata.2012.09.030. https://linkinghub.elsevier.com/retrieve/pii/S0926860X12006230

    Article  CAS  Google Scholar 

  8. Han J, Duan J, Chen P, Lou H, Zheng X, Hong H (2012) Carbon-supported molybdenum carbide catalysts for the conversion of vegetable oils. ChemSusChem 5(4):727–733. https://doi.org/10.1002/cssc.201100476

    Article  CAS  PubMed  Google Scholar 

  9. Boullosa-Eiras S, Lødeng R, Bergem H, Stöcker M, Hannevold L, Blekkan EA (2014) Catalytic hydrodeoxygenation (HDO) of phenol over supported molybdenum carbide, nitride, phosphide and oxide catalysts. Catal Today 223:44–53. https://doi.org/10.1016/j.cattod.2013.09.044. http://linkinghub.elsevier.com/retrieve/pii/S0920586113004458

    Article  CAS  Google Scholar 

  10. Lee WS, Wang Z, Zheng W, Vlachos DG, Bhan A (2014) Vapor phase hydrodeoxygenation of furfural to 2-methylfuran on molybdenum carbide catalysts. Cat Sci Technol 4(8):2340. https://doi.org/10.1039/c4cy00286e. http://xlink.rsc.org/?DOI=c4cy00286e

    Article  CAS  Google Scholar 

  11. Lee WS, Wang Z, Wu RJ, Bhan A (2014) Selective vapor-phase hydrodeoxygenation of anisole to benzene on molybdenum carbide catalysts. J Catal 319:44–53. https://doi.org/10.1016/j.jcat.2014.07.025. https://linkinghub.elsevier.com/retrieve/pii/S0021951714002140

    Article  CAS  Google Scholar 

  12. He L, Qin Y, Lou H, Chen P (2015) Highly dispersed molybdenum carbide nanoparticles supported on activated carbon as an efficient catalyst for the hydrodeoxygenation of vanillin. RSC Adv 5(54):43,141–43,147. https://doi.org/10.1039/C5RA00866B. http://xlink.rsc.org/?DOI=C5RA00866B

    Article  CAS  Google Scholar 

  13. Lu M, Lu F, Zhu J, Li M, Zhu J, Shan Y (2015) Hydrodeoxygenation of methyl stearate as a model compound over Mo2C supported on mesoporous carbon. React Kinet Mech Catal 115 (1):251–262. https://doi.org/10.1007/s11144-015-0839-y

    Article  CAS  Google Scholar 

  14. Shi Y, Yang Y, Li Y W, Jiao H (2016) Mechanisms of Mo2C(101)-catalyzed furfural selective hydrodeoxygenation to 2-methylfuran from computation. ACS Catal. 6(10):6790–6803. https://doi.org/10.1021/acscatal.6b02000

    Article  CAS  Google Scholar 

  15. Qi KZ, Wang GC, Zheng WJ (2013) A first-principles study of CO hydrogenation into methane on molybdenum carbides catalysts. Surf Sci 614:53–63. https://doi.org/10.1016/j.susc.2013.04.001. https://linkinghub.elsevier.com/retrieve/pii/S0039602813001179

    Article  CAS  Google Scholar 

  16. Engelhardt J, Lyu P, Nachtigall P, Schüth F, García ÁM (2017) The influence of water on the performance of molybdenum carbide catalysts in hydrodeoxygenation reactions: a combined theoretical and experimental study. ChemCatChem 9(11):1985–1991. https://doi.org/10.1002/cctc.201700181

    Article  CAS  Google Scholar 

  17. Chen CJ, Bhan A (2017) Mo2C modification by CO2, H2O, and O2: effects of oxygen content and oxygen source on rates and selectivity of m-Cresol hydrodeoxygenation. ACS Catal 7 (2):1113–1122. https://doi.org/10.1021/acscatal.6b02762

    Article  CAS  Google Scholar 

  18. Zacharopoulou V, Vasiliadou ES, Lemonidou AA (2018) Exploring the reaction pathways of bioglycerol hydrodeoxygenation to propene over molybdena-based catalysts. ChemSusChem 11(1):264–275. https://doi.org/10.1002/cssc.201701605

    Article  CAS  PubMed  Google Scholar 

  19. Qi KZ, Wang GC, Zheng WJ (2013) Structure-sensitivity of ethane hydrogenolysis over molybdenum carbides: a density functional theory study. Appl Surf Sci 276:369–376. https://doi.org/10.1016/j.apsusc.2013.03.099. https://linkinghub.elsevier.com/retrieve/pii/S0169433213005849

    Article  CAS  Google Scholar 

  20. Luo Q, Wang T, Walther G, Beller M, Jiao H (2014) Molybdenum carbide catalysed hydrogen production from formic acid – a density functional theory study. J Power Sources 246:548–555. https://doi.org/10.1016/j.jpowsour.2013.07.102. https://linkinghub.elsevier.com/retrieve/pii/S0378775313013116

    Article  CAS  Google Scholar 

  21. Liu X, Salahub DR (2015) Molybdenum carbide nanocatalysts at work in the in situ environment: a density functional tight-binding and quantum mechanical/molecular mechanical study. J Am Chem Soc 137(12):4249–4259. https://doi.org/10.1021/jacs.5b01494

    Article  CAS  PubMed  Google Scholar 

  22. Schaidle JA, Blackburn J, Farberow CA, Nash C, Steirer KX, Clark J, Robichaud DJ, Ruddy DA (2016) Experimental and computational investigation of acetic acid deoxygenation over oxophilic molybdenum carbide: surface chemistry and active site identity. ACS Catal 6(2):1181–1197. https://doi.org/10.1021/acscatal.5b01930

    Article  CAS  Google Scholar 

  23. Shi Y, Yang Y, Li YW, Jiao H (2016) Theoretical study about Mo2C(101)-catalyzed hydrodeoxygenation of butyric acid to butane for biomass conversion. Cat Sci Technol 6(13):4923–4936. https://doi.org/10.1039/C5CY02008E. http://xlink.rsc.org/?DOI=C5CY02008E

    Article  CAS  Google Scholar 

  24. Kim SK, Kim J, Lee SC (2017) Surface-termination dependence of propanoic acid deoxygenation on Mo2C. Catal Commun 99(February):61–65. https://doi.org/10.1016/j.catcom.2017.05.027. https://linkinghub.elsevier.com/retrieve/pii/S1566736717302285

    Article  CAS  Google Scholar 

  25. Rocha AS, Souza LA, Oliveira RR, Rocha AB, Teixeira da Silva V (2017) Hydrodeoxygenation of acrylic acid using Mo2C/Al2 O 3. Appl Catal A Gen 531:69–78. https://doi.org/10.1016/j.apcata.2016.12.009. https://linkinghub.elsevier.com/retrieve/pii/S0926860X16305956

    Article  CAS  Google Scholar 

  26. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  27. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17,953–17,979. https://doi.org/10.1103/PhysRevB.50.17953. http://prb.aps.org/abstract/PRB/v50/i24/p17953_1

    Article  Google Scholar 

  28. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192. https://doi.org/10.1103/PhysRevB.13.5188. arXiv:1011.1669v3

    Article  Google Scholar 

  29. Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40(6):3616–3621. https://doi.org/10.1103/PhysRevB.40.3616

    Article  CAS  Google Scholar 

  30. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11,169–11,186. https://doi.org/10.1103/PhysRevB.54.11169. 0927-0256(96)00008

    Article  CAS  Google Scholar 

  31. Loffreda D, Jugnet Y, Delbecq F, Bertolini JC, Sautet P (2004) Coverage dependent adsorption of acrolein on pt(111) from a combination of first principle theory and HREELS study. J Phys Chem B 108(26):9085–9093. https://doi.org/10.1021/jp037639k

    Article  CAS  Google Scholar 

  32. Marinelli T, Nabuurs S, Ponec V (1995) Activity and selectivity in the reactions of substituted α, β-unsaturated aldehydes. J Catal 151(2):431–438. https://doi.org/10.1006/jcat.1995.1045. http://www.sciencedirect.com/science/article/pii/S0021951785710457

    Article  CAS  Google Scholar 

  33. Loffreda D, Delbecq F, Vigné F, Sautet P (2005) Catalytic hydrogenation of unsaturated aldehydes on pt(111): understanding the selectivity from first-principles calculations. Angew Chem Int Ed 44(33):5279–5282. https://doi.org/10.1002/anie.200500913

    Article  CAS  Google Scholar 

  34. Loffreda D, Delbecq F, Vigné F, Sautet P (2006) Chemo regioselectivity in heterogeneous catalysis: competitive routes for C=O and C=C hydrogenations from a theoretical approach. J Am Chem Soc 128(4):1316–1323. https://doi.org/10.1021/ja056689v

    Article  CAS  PubMed  Google Scholar 

  35. Oliveira RR, Rocha AS, Teixeira Da Silva V, Rocha AB (2014) Investigation of hydrogen occlusion by molybdenum carbide. Appl Catal A Gen 469:139–145. https://doi.org/10.1016/j.apcata.2013.09.031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors also acknowledge the Laboratório Nacional de Computação Científica (LNCC) for computational support of SDumont supercomputer under project ID 25972.

Funding

The authors acknowledge Conselho Nacional de Desenvolvimento e Pesquisa (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo R. Oliveira.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 833 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, R.R., Rocha, A.B. Acrylic acid hydrodeoxygenation reaction mechanism over molybdenum carbide studied by DFT calculations. J Mol Model 25, 309 (2019). https://doi.org/10.1007/s00894-019-4186-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4186-1

Keywords

Navigation