Skip to main content
Log in

Molecular simulation of PcCel45A protein expressed from Aspergillus nidulans to understand its structure, dynamics, and thermostability

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

PACS and mathematical subject classification numbers as needed. Molecular dynamic simulation is a very usable tool to understand various factors, including structure temperature dependence, dynamics, and stability for protein structure. The three main components, namely endoglucanase, exoglucanase, and β-glucosidase, effectively convert lignocellulosic biomass into fermentable sugar. Cellulose is the major component of plant cell walls and is the most abundant organic compound on the earth. Somewhat organisms can use cellulose as a food source, possessing cellulases (cellobiohydrolases and endoglucanases) that can catalyze the hydrolysis of the β-(1,4) glycosidic bonds. In this work, we investigated conformational and structural properties of PcCel45A protein by changing at temperatures with 300 K, 333 K, and 352 K. We found that the ASN92 residue was the major contributor to the stability of structure; some other residues correlated significantly with thermal stability. We also compared the theoretical results of the current study with the experimental ones published in previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rosegrant MW, Zhu T, Msangi S, Sulser T (2008) Global scenarios for biofuels: impacts and implications. Rev Agri Econ 30:495–505

    Article  Google Scholar 

  2. EUR-Lex - 32009L0028 - EN - EUR-Lex. https://eur-lex.europa.eu/eli/dir/2009/28/oj. Accessed 24 Jul 2019

  3. Global biofuel production 2018. In: Statista. https://bit.ly/2LFl4w7. Accessed 24 Jul 2019

  4. Biodiesel production United States 2018. In: Statista. https://bit.ly/30MWFrQ

  5. Srivastava N, Srivastava M, Mishra PK, et al. (2015) Application of cellulases in biofuels industries: an overview. J Biof nd Bioen 1:55. https://doi.org/10.5958/2454-8618.2015.00007.3

    Article  Google Scholar 

  6. Igarashi K, Ishida T, Hori C, Samejima M (2008) Characterization of an endoglucanase belonging to a new subfamily of glycoside hydrolase family 45 of the basidiomycete phanerochaete chrysosporium. Appl Environ Microbiol 74:5628–5634. https://doi.org/10.1128/AEM.00812-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kricka W, Fitzpatrick J, Bond U (2015) Challenges for the production of bioethanol from biomass using recombinant yeasts. In: Advances in applied microbiology. Elsevier, pp 89–125

  8. Eriksson K-EL, Blanchette RA, Ander P (1990) Biodegradation of cellulose. In: Microbial and enzymatic degradation of wood and wood components. Springer, Berlin

    Chapter  Google Scholar 

  9. Clarke AJ (1997) Biodegradation of cellulose: enzymology and biotechnology. Technomic Pub Co, Lancaster

    Google Scholar 

  10. Rojas OJ, Jeong C, Turon X (2007) American chemical measurement of cellulase activity with piezoelectric resonators. In: Argyropoulos DS (ed) Materials, chemicals, and energy from forest biomass. American Chemical Society, Washington, DC, pp 478–494

    Google Scholar 

  11. Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620. https://doi.org/10.1016/S0734-9750(97)00006-2

    Article  CAS  PubMed  Google Scholar 

  12. Shewmaker CK, Stalker DM (1992) Modifying starch biosynthesis with transgenes in potatoes. Plant Physiol 100:1083–1086. https://doi.org/10.1104/pp.100.3.1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Müller-Röber B, Sonnewald U, Willmitzer L (1992) Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J 11:1229–1238

    Article  Google Scholar 

  14. Oakes JV, Shewmaker CK, Stalker DM (1991) Production of cyclodextrins, a novel carbohydrate, in the tubers of transgenic potato plants. Biotechnology (NY) 9:982–986

    Article  CAS  Google Scholar 

  15. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43. https://doi.org/10.1128/MMBR.65.1.1-43.2001

    Article  CAS  Google Scholar 

  16. Sauer DB, Karpowich NK, Song JM, Wang D -N (2015) Rapid bioinformatic identification of thermostabilizing mutations. Biophys J 109:1420–1428

    Article  CAS  Google Scholar 

  17. Pucci F, Rooman M (2017) Physical and molecular bases of protein thermal stability and cold adaptation. Curr Opin Struct Biol 42:117–128

    Article  CAS  Google Scholar 

  18. Yennamalli RM, Rader AJ, Kenny AJ, et al. (2013) Endoglucanases: insights into thermostability for biofuel applications. Biotechnol Biofuels 6:136

    Article  CAS  Google Scholar 

  19. Karlsson J, Siika-aho M, Tenkanen M, Tjerneld F (2002) Enzymatic properties of the low molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of Trichoderma reesei. J Biotechnol 99:63–78

    Article  CAS  Google Scholar 

  20. Karlsson J, Siika-aho M, Tenkanen M, Tjerneld F (2002) Enzymatic properties of the low molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of Trichoderma reesei. J Biotechnol 99:63–78. https://doi.org/10.1016/S0168-1656(02)00156-6

    Article  CAS  Google Scholar 

  21. Godoy AS, Ramia MP, Camilo CM, Polikarpov I X-ray structure of PcCel45A expressed in Aspergillus nidullans. To be published. https://doi.org/10.2210/pdb5kjo/pdb

  22. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236. https://doi.org/10.1021/ja9621760

    Article  CAS  Google Scholar 

  23. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487. https://doi.org/10.1021/jp003919d

    Article  CAS  Google Scholar 

  24. Abraham MJ, Murtola T, Schulz R, et al. (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  25. Páll S, Abraham MJ, Kutzner C, et al. (2015) Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In: Markidis S, Laure E (eds) Solving software challenges for exascale. Springer International Publishing, Cham

    Google Scholar 

  26. Pronk S, Páll S, Schulz R, et al. (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854. https://doi.org/10.1093/bioinformatics/btt055

    Article  CAS  Google Scholar 

  27. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447. https://doi.org/10.1021/ct700301q

    Article  CAS  Google Scholar 

  28. Van Der Spoel D, Lindahl E, Hess B, et al. (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

  29. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    Article  CAS  Google Scholar 

  30. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56. https://doi.org/10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  31. Jorgensen WL, Chandrasekhar J, Madura JD, et al. (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  32. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

    Article  CAS  Google Scholar 

  33. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101. https://doi.org/10.1063/1.2408420

    Article  CAS  Google Scholar 

  34. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N ) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  35. Pettersen EF, Goddard TD, Huang CC, et al. (2004) UCSF Chimera? A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  Google Scholar 

  36. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  37. Peng X-N, Wang J, Zhang W (2017) Molecular dynamics simulation analysis of the effect of T790M mutation on epidermal growth factor receptor protein architecture in non-small cell lung carcinoma. Oncol Lett 14:2249–2253. https://doi.org/10.3892/ol.2017.6387

    Article  CAS  Google Scholar 

  38. Nishiyama K (2008) Thermal behavior of luciferase on nanofabricated hydrophilic Si surface. Biomacromolecules 9:1081–1083. https://doi.org/10.1021/bm701264r

    Article  CAS  PubMed  Google Scholar 

  39. Martinez R, Schwaneberg U, Roccatano D (2011) Temperature effects on structure and dynamics of the psychrophilic protease subtilisin S41 and its thermostable mutants in solution. Protein Eng Des Selection 24:533–544

    Article  CAS  Google Scholar 

  40. Nakamura A, Ishida T, Kusaka K et al (2015) Newton’s cradle proton relay with amide–imidic acid tautomerization in inverting cellulase visualized by neutron crystallography. Sci Adv 1:e1500263. https://doi.org/10.1126/sciadv.1500263

    Article  PubMed  PubMed Central  Google Scholar 

  41. Godoy AS, Pereira CS, Ramia MP, et al. (2018) Structure, computational and biochemical analysis of PcCel45A endoglucanase from Phanerochaete chrysosporium and catalytic mechanisms of GH45 subfamily C members. Sci Rep 8:3678

    Article  Google Scholar 

  42. Szijártó N, Siika-aho M, Tenkanen M, et al. (2008) Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces. J Biotechnol 136:140–147. https://doi.org/10.1016/j.jbiotec.2008.05.010

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Altay Unal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unal, M.A., Boyacioglu, B., Unver, H. et al. Molecular simulation of PcCel45A protein expressed from Aspergillus nidulans to understand its structure, dynamics, and thermostability. J Mol Model 25, 317 (2019). https://doi.org/10.1007/s00894-019-4175-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4175-4

Keywords

Navigation