Skip to main content
Log in

Understanding structure-activity relation in VxOy clusters of varied stoichiometry and sizes through conceptual density functional approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Computations have been performed on VxOy clusters (with x = 1–8, y = 1–21) to explore their structure, stability, and reactivity based on local and global reactivity descriptors defined within the formalism of density functional theory (DFT). The vertical and adiabatic ionization energies and electron affinities are in accordance with Franck–Condon principle and suggest that the VxOy clusters are more likely to be electron acceptors than donors. The structure and reactivity of VxOy clusters delicately depend on their oxygen content and environment. Distinct active sites have been identified for each cluster species on the basis of coordination, symmetry, and charge distribution. The propensity of all the reactive sites towards an approaching electrophile and/or nucleophile has been studied using local reactivity descriptor. In oxygen-poor clusters, the vanadium atoms are more prone to nucleophilic attack. With an increase in oxygen concentration, the coordination number of vanadium increases and reaches four-fold, the site for nucleophilic attack shifts to terminal oxygens. We conclude that of all the stoichiometries, the stable VxOy clusters have the (VO3)a(V2O5)b formula unit. The localization of positive charge density in cubic cage structure of V8O20 successfully traps halide ions (F, Cl, and Br). In view of increasing use of metal oxide clusters in heterogeneous catalysis, the understanding of structure-activity relationship in vanadium oxides’ clusters provided in the current study is highly desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Muylaert I, Van Der Voort P (2009) Supported vanadium oxide in heterogeneous catalysis: elucidating the structure–activity relationship with spectroscopy. Phys. Chem. Chem. Phys. 11:2826–2832

    CAS  PubMed  Google Scholar 

  2. Chen K, Iglesia E, Bell AT (2000) Kinetic isotopic effects in oxidative dehydrogenation of propane on vanadium oxide catalysts. J. Catal 192:197–203

    CAS  Google Scholar 

  3. Lapina OB, Bal'zhinimaev BS, Boghosian S, Eriksen KM, Fehrmann R (1999) Progress on the mechanistic understanding of SO2 oxidation catalysts. Catal. Today 51:469–479

    CAS  Google Scholar 

  4. Weckhuysen BM, Keller DE (2003) Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal. Today 78:25–46

    CAS  Google Scholar 

  5. Feyel S, Schröder D, Schwarz H (2006) Gas-phase oxidation of isomeric butenes and small alkanes by vanadium-oxide and-hydroxide cluster cations. J. Phys. Chem. A 110:2647–2654

    CAS  PubMed  Google Scholar 

  6. Feyel S, Döbler J, Schröder D, Sauer J, Schwarz H (2006) Thermal activation of methane by tetranuclear [V4O10]+. Angew. Chem. Int. Ed. 45:4681–4685

    CAS  Google Scholar 

  7. Kang H, Beauchamp JL (1986) Gas-phase studies of alkene oxidation by transition-metal oxides. Ion-beam studies of CrO+. J. Am. Chem. Soc. 108:5663–5668

    CAS  PubMed  Google Scholar 

  8. Zemski KA, Justes DR, Bell RC, Castleman AW (2001) Reactions of niobium and tantalum oxide cluster cations and anions with n-butane. J. Phys. Chem. A 105:4410–4417

    CAS  Google Scholar 

  9. Dong F, Heinbuch S, Xie Y, Rocca JJ, Bernstein ER, Wang ZC, Deng K, He SG (2008) Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene. J. Am. Chem. Soc. 130:1932–1943

    CAS  PubMed  Google Scholar 

  10. Santambrogio G, Brümmer M, Wöste L, Döbler J, Sierka M, Sauer J, Meijer G, Asmis KR (2008) Gas phase vibrational spectroscopy of mass-selected vanadium oxide anions. Phys. Chem. Chem. Phys. 10:3992–4005

    CAS  PubMed  Google Scholar 

  11. Moore NA, Mitrić R, Justes DR, Bonačić-Koutecký V, Castleman AW (2006) Kinetic analysis of the reaction between (V2O5) n= 1, 2+ and ethylene. J. Phys. Chem. B 110:3015–3022

    CAS  PubMed  Google Scholar 

  12. Zhang MQ, ZhaoY X, Liu QY, Li XN, He SG (2016) Does each atom count in the reactivity of vanadia nanoclusters? J. Am. Chem. Soc. 139:42–347

    Google Scholar 

  13. Kooi SE, Castleman Jr AW (1999) Photofragmentation of vanadium oxide cations. J. Phys. Chem. A 103:5671–5674

    CAS  Google Scholar 

  14. Bell RC, Zemski KA, Kerns KP, Deng HT, Castleman Jr AW (1998) Reactivities and collision-induced dissociation of vanadium oxide cluster cations. J. Phys. Chem. A 102:1733–1742

    CAS  Google Scholar 

  15. Bell RC, Zemski KA, Justes DR, Castleman Jr AW (2001) Formation, structure and bond dissociation thresholds of gas-phase vanadium oxide cluster ions. J. Chem. Phys. 114:798–811

    CAS  Google Scholar 

  16. Albaret T, Finocchi F, Noguera C (1999) First principles simulations of titanium oxide clusters and surfaces. Faraday Discuss. 114:285–304

    CAS  Google Scholar 

  17. Finocchi F, Noguera C (1996) Structure and bonding of small stoichiometric lithium oxide clusters. Phys. Rev. B 53:4989–4998

    CAS  Google Scholar 

  18. Albaret T, Finocchi F, Noguera C (2000) Density functional study of stoichiometric and O-rich titanium oxygen clusters. J. Chem. Phys. 113:2238–2249

    CAS  Google Scholar 

  19. Bell RC, Zemski KA, Castleman Jr AW (1999) Gas- phase chemistry of vanadium oxide cluster cations 2. Reactions with CH2F2. J. Phys. Chem. A 103:2992–2998

    CAS  Google Scholar 

  20. Bell RC, Zemski KA, Castleman Jr AW (1999) Gas-phase chemistry of vanadium oxide cluster cations 3. Reactions with CCl4. J. Phys. Chem. A 103:1585–1591

    CAS  Google Scholar 

  21. Bell RC, Zemski KA, Justes DR, Castleman Jr AW (2001) Formation, structure and bond dissociation thresholds of gas-phase vanadium cluster ions. J. Chem. Phys. 114:798–811

    CAS  Google Scholar 

  22. Foltin M, Stueber GJ, Bernstein ER (1999) On the growth dynamics of neutral vanadium oxide and titanium oxide clusters. J. Chem. Phys. 111:9577–9586

    CAS  Google Scholar 

  23. Chen ZY, Yang JL (2006) Theoretical study on geometrical and electronic properties of anionic and neutral V2O6 clusters. Chin. J Chem Phys 19:391–394

    CAS  Google Scholar 

  24. Miliordos E, Mavridis A (2007) Electronic structure of vanadium oxide. neutral and charged species, VO0,±. J. Phys. Chem. A 111:1953–1965

    CAS  PubMed  Google Scholar 

  25. Jakubikova E, Rappé AK, Bernstein ER (2007) Density functional theory study of small vanadium oxide clusters. J Phys Chem.A 111:12938–12943

    CAS  PubMed  Google Scholar 

  26. Wang LF, Xie L, Fang HL, Li YF, Zhang XB, Wang B, Zhang YF, Huang X (2014) On the structural and electronic properties of hexanuclear vanadium oxide clusters V6On −/0 (n= 12–15): is V6O12 cluster planar or cage-like? Spectrochim. Acta A 131:446–454

    CAS  Google Scholar 

  27. Pykavy M, van Wüllen C, Sauer J (2004) Electronic ground states of the V2O4 +/0/− species from multireference correlation and density functional studies. J. Chem. Phys. 120:4207–4215

    CAS  PubMed  Google Scholar 

  28. Matsuda Y, Bernstein ER (2005) Identification, structure, and spectroscopy of neutral vanadium oxide clusters. J. Phys. Chem. A 109:3803–3811

    CAS  PubMed  Google Scholar 

  29. Vyboishchikov SF, Saue J (2000) Gas-phase vanadium oxide anions: structure and detachment energies from density functional calculations. J. Phys. Chem. A 104:10913–10922

    CAS  Google Scholar 

  30. Wu JW, Moriyama R, Tahara H, Ohshimo K, Misaizu F (2016) Compositions and structures of vanadium oxide cluster ions VmOn ± (m= 2–20) investigated by ion mobility mass spectrometry. J. Phys. Chem. A 120:3788–3796

    CAS  PubMed  Google Scholar 

  31. Vyboishchikov SF, Sauer J (2001) (V2O5)n Gas-phase clusters (n= 1–12) compared to V2O5 crystal: DFT calculations. J. Phys. Chem. A 105:8588–8598

    CAS  Google Scholar 

  32. Jia MY, Xu BK, Deng SG, He MFG (2014) Consecutive oxygen-for-sulfur exchange reactions between vanadium oxide cluster anions and hydrogen sulfide. J. Phys. Chem. A 118:8106–8114

    CAS  PubMed  Google Scholar 

  33. Jakubikova E, Bernstein ER (2007) Reactions of sulfur dioxide with neutral vanadium oxide clusters in the gas phase. I. Density Functional Theory Study. J. Phys. Chem. A 111:13339–13346

    CAS  PubMed  Google Scholar 

  34. Yuan Z, Li ZY, Zhou ZX, Liu QY, Zhao YX, He SG (2014) Thermal reactions of (V2O5)nO (n= 1–3) cluster anions with ethylene and propylene: oxygen atom transfer versus molecular association. J. Phys. Chem. C 118:14967–14976

    CAS  Google Scholar 

  35. Dong F, Heinbuch S, Xie Y, Bernstein ER, Rocca JJ, Wang ZC, Ding XL, He SG (2009) C═C bond cleavage on neutral VO3(V2O5)n clusters. J. Am. Chem. Soc. 131:1057–1066

    CAS  PubMed  Google Scholar 

  36. Wu XN, Ding XL, Li ZY, Zhao YX, He SG (2014) Hydrogen atom abstraction from CH4 by nanosized vanadium oxide cluster cations. J. Phys. Chem. C 118:24062–24071

    CAS  Google Scholar 

  37. Parr RG, Szentpaly LV, Liu S (1991) Electrophilicity index. J. Am. Chem. Soc. 121:1922–1924

    Google Scholar 

  38. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J. Chem. Phys. 68:3801–3807

    CAS  Google Scholar 

  39. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  40. Pearson RG (1963) Hard and soft acids and bases. J. Am. Chem. Soc. 85:3533–3539

    CAS  Google Scholar 

  41. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105:7512–7516

    CAS  Google Scholar 

  42. Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J. Am. Chem. Soc. 113:1855–1856

    CAS  Google Scholar 

  43. Chattaraj PK, Schleyer PVR (1994) An ab initio study resulting in a greater understanding of the HSAB principle. J. Am. Chem. Soc. 116:1067–1071

    CAS  Google Scholar 

  44. Chattaraj PK, Maiti B (2003) HSAB principle applied to the time evolution of chemical reactions. J. Am. Chem. Soc. 125:2705–2710

    CAS  PubMed  Google Scholar 

  45. Pearson RG (1997) Chemical hardness. Wiley-VCH

  46. Berkowitz M, Ghosh SK, Parr RG (1985) On the concept of local hardness in chemistry. J. Am. Chem. Soc. 107:6811–6814

    CAS  Google Scholar 

  47. Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. Phys. Rev. 140:1133–1138

    Google Scholar 

  48. Domingo LR, Chamorro E, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J. Org. Chem. 73:4615–4624

    CAS  PubMed  Google Scholar 

  49. Pérez P, Domingo LR, Duque-Noreña M, Chamorro EA (2009) Condensed-to-atom nucleophilicity index. An application to the director effects on the electrophilic aromatic substitutions. J. Mol. Struct.: Theochem. 895:86–91

    Google Scholar 

  50. Sharma P, Kumar A, Sahu V (2009) Theoretical evaluation of global and local electrophilicity patterns to characterize hetero-Diels− Alder cycloaddition of three-membered 2H-azirine ring system. J. Phys. Chem. A 114:1032–1038

    Google Scholar 

  51. Sharma P, Kumar A, Sahu V (2011) Methyl 2-(4-methylphenyl)-2H-azirine-3-carboxylate as dienophile in hetero-Diels-Alder cycloaddition: a DFT approach. Lett. Org. Chem. 8:132–137

    CAS  Google Scholar 

  52. Chattaraj PK, Giri S, Duley S (2011) Update 2 of electrophilicity index. Chem. Rev. 111:43–75

    Google Scholar 

  53. Soto-Delgado J, Domingo LR, Contreras R (2010) Quantitative characterization of group electrophilicity and nucleophilicity for intramolecular Diels–Alder reactions. Org. Biomol. Chem. 8:3678–3683

    CAS  PubMed  Google Scholar 

  54. Domingo LR, Zaragozá RJ, Saéz JA, Arnó M (2012) Understanding the mechanism of the intramolecular Stetter reaction. A DFT study. Molecules 17:1335–1353

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Roos G, Geerlings P, Messens J (2009) Enzymatic catalysis: the emerging role of conceptual density functional theory. J. Phys. Chem. B 113:13465–13475

    CAS  PubMed  Google Scholar 

  56. Kar R, Pal S (2010) Effect of solvents having different dielectric constants on reactivity: a conceptual DFT approach. Int. J. Quantum Chem. 110:1642–1647

    CAS  Google Scholar 

  57. De HS, Krishnamurty S, Pal S (2009) Density functional investigation of relativistic effects on the structure and reactivity of tetrahedral gold clusters. J. Phys. Chem. C 113:7101–7106

    CAS  Google Scholar 

  58. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. Chem. Phys. 98:5648–5652

    CAS  Google Scholar 

  59. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37:785–789

    CAS  Google Scholar 

  60. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100:5829–5835

    Google Scholar 

  61. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H (2009) Gaussian 09, revision A.1. Gaussian. Inc, Wallingford

    Google Scholar 

  62. Kaur N, Kumari I, Gupta S, Goel N (2016) Spin inversion phenomenon and two-state reactivity mechanism for direct benzene hydroxylation by V4O10 cluster. J. Phys. Chem. A 120:9588–9597

    CAS  PubMed  Google Scholar 

  63. Li H, Li C, Fan H, Yang J (2010) Studies on electronic structures, energetics, and electron affinities of transition metal–benzene complexes and their anions with density functional theory. J. Mol. Struc.-Theochem. 952:67–73

    CAS  Google Scholar 

  64. Chandrakumar KRS, Pal S (2002) The concept of density functional theory based descriptors and its relation with the reactivity of molecular systems: a semi-quantitative study. Int. J. Mol. Sci. 3:324–337

    CAS  Google Scholar 

  65. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc. 106:4049–4050

    CAS  Google Scholar 

  66. Yang Y, Parr R (1985) Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. G. Proc. Natl. Acad. Sci. U. S. A. 821:6723–6726

    Google Scholar 

  67. Pearson RG (1987) Recent advances in the concept of hard and soft acids and bases. J. Chem. Educ. 64:561–567

    CAS  Google Scholar 

  68. Roy RK, Krishnamurty S, Geerlings P, Pal S (1998) Local softness and hardness based reactivity descriptors for predicting intra-and intermolecular reactivity sequences: carbonyl compounds. J. Phys. Chem. A 102:3746–3755

    CAS  Google Scholar 

  69. Roy RK, de Proft FD, Geerlings P (1998) Site of protonation in aniline and substituted anilines in the gas phase: a study via the local hard and soft acids and bases concept. J. Phys. Chem. A 102:7035–7040

    CAS  Google Scholar 

  70. Morell C, Grand A, Toro-Labbe A (2005) New dual descriptor for chemical reactivity. J. Phys. Chem. A 109:205–212

    CAS  PubMed  Google Scholar 

  71. Bauzá A, Mooibroek TJ, Frontera A (2013) Tetrel-bonding interaction: rediscovered supramolecular force? Angew. Chem. Int. Ed. 52:12317–12321

    Google Scholar 

  72. Wang ZC, Yin S, Bernstein ER (2013) Catalytic oxidation of CO by N2O conducted via the neutral oxide cluster couple VO2/VO3. Phys. Chem. Chem. Phys. 15:10429–10434

    CAS  PubMed  Google Scholar 

  73. Zhao YX, Ding XL, Ma YP, Wang ZC, He SG (2010) Transition metal oxide clusters with character of oxygen-centered radical: a DFT study. Theor. Chem. Acc. 127:449–465

    CAS  Google Scholar 

  74. Kaur N, Gupta S, Goel N (2017) Enantioselective synthesis of sulfoxide using an SBA-15 supported vanadia catalyst: a computational elucidation using a QM/MM approach. Phys. Chem. Chem. Phys. 19:25059–25070

    CAS  PubMed  Google Scholar 

  75. Dong F, Heinbuch S, Xie Y, Rocca JJ, Bernstein ER (2009) Reactions of neutral vanadium oxide clusters with methanol. J. Phys. Chem. A 113:3029–3040

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Prof. M. Springborg for being a wonderful host during my (N.G) stay at Saarbrucken; discussions with him and Dr. M. Molayem were very helpful in interpreting the results.

Funding

This work was financially supported by Science and Engineering Research Board (SERB), DST, India via grant no. SERB/F/8589/2014–2015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuchi Gupta or Neetu Goel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 908 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, N., Gupta, S. & Goel, N. Understanding structure-activity relation in VxOy clusters of varied stoichiometry and sizes through conceptual density functional approach. J Mol Model 25, 319 (2019). https://doi.org/10.1007/s00894-019-4168-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4168-3

Keywords

Navigation