Skip to main content
Log in

First principles investigations of the structural, elastic, vibrational, and thermodynamic properties of TiMg2O4 oxide spinels: cubic and tetragonal phases

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the present study ab initio methology under density functional theory with generalized gradient approximation is used to study the structural, elastic, and vibrational properties of TiMg2O4 with cubic and tetragonal phases with space groups (Fd\( \overline{3} \)m) and P4_122, respectively. The present study shows that the studied compound TiMg2O4 is mechanically stable in both phases. Both phases have ductile nature and strong anisotropic properties, and it is also observed that the tetragonal phase has more anisotropic properties compared to the cubic phase. Obtained structural parameters are in good agreement with related literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Höök M, Tang X (2013) Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy 52:797–809

    Google Scholar 

  2. Lazkano I, Nøstbakken L, Pelli M (2017) From fossil fuels to renewables: the role of electricity storage. Eur Econ Rev 99:113–129

    Google Scholar 

  3. Li W, Dolocan A, Oh P, Celio H, Park S, Cho J, Manthiram A (2017) Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. Nat Commun 8:14589

    PubMed  PubMed Central  Google Scholar 

  4. Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164:A5019–A5025

    CAS  Google Scholar 

  5. Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3295

    CAS  Google Scholar 

  6. Dyer DK (2002) J Power Sources 106:31–34

    CAS  Google Scholar 

  7. Bashash S, Moura SJ, Forman JC, Fathy HK (2011) J Power Sources 196:541–549

    CAS  Google Scholar 

  8. Bates JB, Dudney NJ, Neudecker B, Ueda A, Evans CD (2000) Solid State Ionics 135:33–45

    CAS  Google Scholar 

  9. Whittingham MS (2004) Chem Rev 104:4271–4302

    CAS  PubMed  Google Scholar 

  10. Khomenko V, Piñero ER, Béguin F (2008) J Power Sources 177:643–651

    CAS  Google Scholar 

  11. Sakaebe H, Matsumoto H (2003) Electrochem Commun 5:594–598

    CAS  Google Scholar 

  12. Roberts AD, Li X, Zhang H (2014) Chem Soc Rev 43:4341–4356

    CAS  PubMed  Google Scholar 

  13. Clément RJ, Bruce PG, Grey CP (2015) J Electrochem Soc 162:A2589–A2604

    Google Scholar 

  14. Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce PG (2006) J Am Chem Soc 128:1390–1393

    CAS  PubMed  Google Scholar 

  15. Desilvestro J, Haas O (1990) J Electrochem Soc 137:5C–22C

    CAS  Google Scholar 

  16. Ammundsen B, Paulsen J (2001) Adv Mater 13:943–956

    CAS  Google Scholar 

  17. Gong Y, Ding W, Li Z, Su R, Zhang X, Wang J, Zhou J, Wang Z, Gao Y, Li S, Guan P, Wei Z, Sun C (2018) ACS Catal 8:4082–4090

    CAS  Google Scholar 

  18. Patoux S, Daniel L, Bourbon C, Lignier H, Pagano C, Cras FL, Jouanneau S, Martinet S (2009) J Power Sources 189:344–352

    CAS  Google Scholar 

  19. Okamoto S, Ichitsubo T, Kawaguchi T, Kumagai Y, Oba F, Yagi S, Shimokawa K, Goto N, Do T, Matsubara E (2015) Adv Sci 2:1500072

    Google Scholar 

  20. Robertson AD, Trevino L, Tukamoto H, Irvine JTS (1999) J Power Sources 81:352–357

    Google Scholar 

  21. Walsh A, Wei SH, Yan Y, Al-Jassim MM, Turner JA (2007) Phys Rev B 76:165119

    Google Scholar 

  22. Akbudak S, Kushwaha AK, Ugur G, Ugur Ş, Ocak HY (2018) Ceram Int 44:310–316

    CAS  Google Scholar 

  23. Boumaza S, Boudjemaa A, Bouguelia A, Bouarab R, Trari M (2010) Appl Energy 87:2230–2236

    CAS  Google Scholar 

  24. Anchieta CG, Salleta D, Folettoa EL, Da Silva SS, Chiavone-Filho O, Do Nascimento CAO (2014) Ceram Int 40:4173–4178

    CAS  Google Scholar 

  25. Stoica M, Lo CS (2014) New J Phys 16:055011

    Google Scholar 

  26. Felser C, Fecher GH, Balke B (2007) Angew Chem Int Ed 46:668–699

    CAS  Google Scholar 

  27. Santos-Carballal D, Roldan A, Grau-Crespo R, de Leeuw NH (2015) Phys Rev B 91:195106

    Google Scholar 

  28. Caracas R, Banigan EJ (2009) Phys Earth Planet Inter 174:113–121

    CAS  Google Scholar 

  29. Abbas SA, Rashid M, Faridi MA, Saddique MB, Mahmood A, Ramay SM (2018) J Phys Chem Solids 113:157–163

    CAS  Google Scholar 

  30. Xu XL, Chen ZH, Li Y, Chen WK, Li JQ (2009) Surf Sci 603:653–658

    CAS  Google Scholar 

  31. Bouhemadou A, Khenata R (2006) Phys Lett A 360:339–343

    CAS  Google Scholar 

  32. Bouhemadou A, Khenata R, Zerarga F (2007) Comput Mater Sci 39:709–712

    CAS  Google Scholar 

  33. Karazhanov SZ, Ravindrany P (2010) J Am Ceram Soc 93:3335–3341

    CAS  Google Scholar 

  34. Chen J, Wu X, Selloni A (2011) Phys Rev B 83:245204

    Google Scholar 

  35. Sampath SK, Kanhere DG, Pandey R (1999) Phys. Condens Matter 11:3635–3644

    CAS  Google Scholar 

  36. Yan W, Bian W, Jin C, Tian JH, Yang R (2015) Electrochim Acta 177:65–72

    CAS  Google Scholar 

  37. Hu J, Zhao W, Hu R, Chang G, Li C, Wang L (2014) Mater Res Bull 57:268–273

    CAS  Google Scholar 

  38. Han H, Park KR, Hong YR, Shim K, Mhin S (2018) J Alloys Compd 732:486–490

    CAS  Google Scholar 

  39. Brik MG, Suchocki A, Kamińska A (2014) Inorg Chem 53:5088–5099

    CAS  PubMed  Google Scholar 

  40. Ottonelo G (1986) Phys Chem Miner 13:79–90

    Google Scholar 

  41. Kresse G, Hafner J (1993) Phys Rev B 48:13115

    CAS  Google Scholar 

  42. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169

    CAS  Google Scholar 

  43. Blöchl PE (1994) Phys Rev B 50:17953

    Google Scholar 

  44. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    CAS  Google Scholar 

  45. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Google Scholar 

  46. Blöchl PE, Jepsen O, Andersen OK (1994) Phys Rev B 49:16223

    Google Scholar 

  47. Nielsen H, Martin RM (1983) Phys Rev Lett 50:697

    CAS  Google Scholar 

  48. Parlinski K, Li ZQ, Kawazoe Y (1997) Phys Rev Lett 78:4063

    CAS  Google Scholar 

  49. Born MH (1988) Dynamical theory of crystal lattices. Oxford University, Oxford

    Google Scholar 

  50. Voigt W (1928) Lehrbuch der Kristallphysik. Taubner, Leipzig

    Google Scholar 

  51. Reuss A (1929) Z Angew Math Mech 9:55

    Google Scholar 

  52. Hill R (1952) Proc Phys Soc, London, Sect A 65:349

    Google Scholar 

  53. Pugh SF (1954) Philos Mag 45:823

    CAS  Google Scholar 

  54. Ravindran P, Fast L, Korzhavyi PA, Johansson B (1998) J Appl Phys 84:4891

    CAS  Google Scholar 

  55. Ranganathan SI, Ostoja-Starzewski M (2008) Phys Rev Lett 101:055504

    PubMed  Google Scholar 

  56. Anderson OL (1963) J Phys Chem Solids 24:909

    CAS  Google Scholar 

  57. Schreiber E, Anderson OL, Soga N (1973) Elastic constants and their measurements. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Kushwaha.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwaha, A.K., Akbudak, S., Uğur, G. et al. First principles investigations of the structural, elastic, vibrational, and thermodynamic properties of TiMg2O4 oxide spinels: cubic and tetragonal phases. J Mol Model 25, 210 (2019). https://doi.org/10.1007/s00894-019-4098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4098-0

Keywords

Navigation