Skip to main content
Log in

Time-dependent pair density from the principle of minimum Fisher information

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The Euler equation for the time-dependent pair density is derived from the principle of minimum Fisher information. The same Euler equation is also derived from the recently introduced time-dependent pair density functional theory. The concept of steric effect to electron pairs is proposed and the steric pair energy is defined as the Weizsäcker kinetic energy of electron pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gadre SR (1984) Phys Rev A 30:620

    Article  Google Scholar 

  2. Gadre SR, Sears SB, Chakravorty SJ, Bendale RD (1985) Phys Rev A 32:2602

    Article  CAS  Google Scholar 

  3. Hó M, Sagar RP, Smith V H Jr, Esquivel RO (1994) J Phys B 27:5149

    Article  Google Scholar 

  4. Moustakidis ChC, Massen SE (2005) Phys Rev B 71:045102

    Article  CAS  Google Scholar 

  5. Nagy Á (2006) Chem Phys Lett 425:154

    Article  CAS  Google Scholar 

  6. Nagy Á, Sen KD (2006) Phys Lett A 360:291

    Article  CAS  Google Scholar 

  7. Hornyák I, Nagy Á (2007) Chem Phys Lett 437:132

    Article  CAS  Google Scholar 

  8. Romera E, Dehesa JS (2004) J Chem Phys 120:8906

    Article  CAS  PubMed  Google Scholar 

  9. Liu SB (2007) J Chem Phys 126:191107

    Article  CAS  PubMed  Google Scholar 

  10. Nagy Á (2007) Chem Phys Lett 449:212

    Article  CAS  Google Scholar 

  11. Nagy Á, Liu SB (2008) Phys Lett A 372:1654

    Article  CAS  Google Scholar 

  12. Szabó J B, Sen KD, Nagy Á (2008) Phys Lett A 372:2428

    Article  CAS  Google Scholar 

  13. Nalewajski RF (2014) Found Che 16:27

    Article  Google Scholar 

  14. Liu SB (2016) Acta Phys Chim Sin 32:98

    Google Scholar 

  15. Levämäki H, Nagy Á, Vilja I, Kokko K, Vitos L (2017) Int J Quantum Chem. https://doi.org/10.1002/qua25557

  16. Guevara NL, Sagar RP, Esquivel RO (2003) J Chem Phys 119:7030

    Article  CAS  Google Scholar 

  17. Sagar RP, Laguna HC, Guevara NL (2011) Int J Quantum Chem 111:3497

    CAS  Google Scholar 

  18. Moustakidis ChC, Chatzisavvas KCh, Panos CP (1087) Int J Mod Phys E, 14

  19. Nagy Á, Romera E (2010) Chem Phys Lett 490:242

    Article  CAS  Google Scholar 

  20. Nagy Á (2011) Acta Physica Debrecina 45:105

    CAS  Google Scholar 

  21. Fisher RA (1925) Proc Cambridge Philos Soc 22:700

    Article  Google Scholar 

  22. Sears SB, Parr RG, Dinur U (1980) Israel J Chem 19:165

    Article  CAS  Google Scholar 

  23. Nagy Á (2003) J Chem Phys 119:9401

    Article  CAS  Google Scholar 

  24. Nalewajski RF (2003) Chem Phys Lett 372(154):844

    Google Scholar 

  25. Frieden BF (1980) Physics form Fisher information. A unification. Cambridge University Press, Cambridge

    Google Scholar 

  26. Nagy Á, Romera E (2009) Phys Lett A 373:1654

    Google Scholar 

  27. Ziesche P (1994) Phys Lett A 195:213

    Article  CAS  Google Scholar 

  28. Gonis A, Schulthess TC, van Ek J, Turchi PEA (1996) Phys Rev Lett 77:2981

    Article  CAS  PubMed  Google Scholar 

  29. Nagy Á (2002) Phys Rev A 66:022505

    Article  CAS  Google Scholar 

  30. Nagy Á (2003) Pair density functional theory. In: Gidopoulos NI, Wilson S (eds) The fundamentals of electron density, density matrices and density functional theory in atoms, molecules and solid state. Kluwer Academic Publishers, p 79

  31. Nagy Á , Amovilli C (2004) J Chem Phys 121:6640

    Article  CAS  PubMed  Google Scholar 

  32. Nagy Á (2014) Phys Rev A 90:022505

    Article  CAS  Google Scholar 

  33. Nagy Á (2018) Eur Phys J B 91:110

    Article  CAS  Google Scholar 

  34. Runge E, Gross EKU (1984) Phys Rev Lett 52:997

    Article  CAS  Google Scholar 

  35. Gross EKU, Dobson JF, Petersilka M (1966) Density functional theory. In: Nalewajski RF (ed) Topics in current chemistry, vol 181. Springer, Berlin, p 81

  36. Casida ME, Huix-Rotllant M (2012) Annu. Rev. Phys. Chem. 63:287

    Article  CAS  PubMed  Google Scholar 

  37. Maitra NT (2016) J Chem Phys 144:220901

    Article  CAS  PubMed  Google Scholar 

  38. Weizsäcker C F (1935) Z Phys 96:341

    Article  Google Scholar 

  39. Levy M, Perdew JP, Sahni V (1984) Phys Rev A 30:2745

    Article  Google Scholar 

  40. March NH (1985) Phys Lett 113A:66

    Article  CAS  Google Scholar 

  41. Reginatto M (1998) Phys Rev A 58:1775

    Article  CAS  Google Scholar 

  42. Chakraboty D, Ayers PW (2005) J Math Phys 46:062107

    Article  CAS  Google Scholar 

  43. Chakraboty D, Ayers PW (2011). In: Sen KD (ed) Statistical complexity: applications in electronic structure. Springer, New York, p 35

Download references

Acknowledgments

This research was supported by the EU-funded Hungarian grant EFOP-3.6.2-16-2017-00005 and the National Research, Development and Innovation Fund of Hungary, financed under 123988 funding scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Á. Nagy.

Additional information

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Appendix: derivation of the Euler equation of the time-dependent pair density

Appendix: derivation of the Euler equation of the time-dependent pair density

The EE can be derived from AE (8). The functions χI(x1,x2,t) can be written in the form

$$\begin{array}{@{}rcl@{}} \chi_{I}(\mathbf{x}_{1},\mathbf{x}_{2},t) &=& n(\mathbf{q},t)^{1/2} \phi_{I}(\mathbf{q},t) \gamma(\sigma_{1},\sigma_{2}) exp\\&&\times \left[ i \left( S(\mathbf{q},t)-S_{I}(t) \right) \right] , \end{array} $$
(29)

where S and SI are real, while ϕI are generally complex functions. SI are functions of t only. γ is the normalized, antisymmetric spin function of the electron pair with opposite spins. (Note that in the present version of the TDPDFT, the pairs contain electrons with opposite spins.) Substituting (29) into the pair density (7) we are led to

$$\begin{array}{@{}rcl@{}} 1 = (N-1) \sum\limits_{I = 1}^{M} |\phi_{I}(\mathbf{q},t)|^{2} .\end{array} $$
(30)

The derivative of Eq. 30 with respect to the time is

$$\begin{array}{@{}rcl@{}} 0 = \sum\limits_{I} \left[ \phi_{I}^{*}\frac{\partial \phi_{I}}{\partial t} + \phi_{I}\frac{\partial \phi_{I}^{*}}{\partial t} \right] , \end{array} $$
(31)

while the first and second spatial derivatives take the form

$$\begin{array}{@{}rcl@{}} 0 = \sum\limits_{I} \left[ \phi_{I}^{*} \nabla_{\mathbf{q}}\phi_{I} + \phi_{I}\nabla_{\mathbf{q}}\phi_{I}^{*} \right] , \end{array} $$
(32)
$$\begin{array}{@{}rcl@{}} 0 = \sum\limits_{I} \left[ \phi_{I}^{*}\nabla^{2}_{\mathbf{q}}\phi_{I} + \phi_{I}\nabla_{\mathbf{q}}^{2}\phi_{I}^{*} + 2 |\nabla_{\mathbf{q}}\phi_{I}|^{2} \right] . \end{array} $$
(33)

Substituting (29) into the AE (8), multiplying (8) with \(\phi _{I}^{*}\), summing over all I and spins and then adding the complex conjugate we arrive at the equation:

$$\begin{array}{@{}rcl@{}} &&\frac18 \left( \frac{\nabla_{\mathbf{q}}n}{n}\right)^{2} - \frac14 \frac{\nabla^{2}_{\mathbf{q}}n}{n} + \frac12 (\nabla_{\mathbf{q}}S)^{2} + v_{eff} \\ &=&\frac12 i\left( \nabla^{2}_{\mathbf{q}}S + \nabla_{\mathbf{q}}S \frac{\nabla_{\mathbf{q}}n}{n} + \frac{1}{n} \frac{\partial n}{\partial t}\right) \\ &&+ \frac{N-1}{4} \sum\limits_{I} \left[ \phi_{I}^{*}\nabla^{2}_{\mathbf{q}}\phi_{I} + \phi_{I}\nabla^{2}_{\mathbf{q}}\phi_{I}^{*} \right] - \frac{\partial S}{\partial t} \\&&+ (N-1) \sum\limits_{I}\frac{\partial S_{I}}{\partial t} |\phi_{I}|^{2} . \end{array} $$
(34)

To improve transparency in Eq. 34, the arguments of the functions are not shown. In the derivation (7), (30), (31), (32) and (33) were utilized. Substituting functions χI (29) into the current density of AS (10) we are led to

$$\begin{array}{@{}rcl@{}} \mathbf{j}^{0} = n \nabla_{\mathbf{q}}S . \end{array} $$
(35)

Therefore CE (2) takes the form

$$\begin{array}{@{}rcl@{}} \frac{\partial n}{\partial t} + \nabla_{\mathbf{q}}n \nabla_{\mathbf{q}}S + n \nabla^{2}_{\mathbf{q}}S = 0 , \end{array} $$
(36)

that also can be written in the form of Eq. 22. We can observe that the imaginary part in the right-hand side of Eq. 34 disappears because of CE (36). Consequently, Eq. 34 takes the form

$$\begin{array}{@{}rcl@{}} \frac18 \left( \frac{\nabla_{\mathbf{q}}n}{n}\right)^{2} &-& \frac14 \frac{\nabla^{2}_{\mathbf{q}}n}{n} + {\tilde v}_{P} + \frac12 (\nabla_{\mathbf{q}}S)^{2} + v_{eff} \\&+& \frac{\partial S}{\partial t} = 0 , \end{array} $$
(37)

where

$$\begin{array}{@{}rcl@{}} {\tilde v}_{P} &=& - \frac{N-1}{4} \sum\limits_{I} \left[ \phi_{I}^{*}\nabla^{2}_{\mathbf{q}}\phi_{I} + \phi_{I}\nabla^{2}_{\mathbf{q}}\phi_{I}^{*} \right] \\&&- (N-1) \sum\limits_{I}\frac{\partial S_{I}}{\partial t} |\phi_{I}|^{2} \\ &=& \frac{N-1}{2} \sum\limits_{I} |\nabla_{\mathbf{q}}\phi_{I}|^{2} - (N-1) \sum\limits_{I}\frac{\partial S_{I}}{\partial t} |\phi_{I}|^{2} . \end{array} $$
(38)

Utilizing (9) and (20)

$$\begin{array}{@{}rcl@{}} {\tilde v}_{P} = v_{P} - v_{k} . \end{array} $$
(39)

Finally, we turn to the special case of time-independent external potential. We proved earlier [29,30,31] that in the ground state all auxiliary functions χI = χ1 are the same and the pair density satisfies EE

$$\begin{array}{@{}rcl@{}} \frac18 \left( \frac{\nabla_{\mathbf{q}}n}{n}\right)^{2} - \frac14 \frac{\nabla^{2}_{\mathbf{q}}n}{n} + v_{eff} = \mu , \end{array} $$
(40)

where \(\mu = {E_{0}^{N}} - E_{0}^{N-2}\) is the “pair ionization energy”, that is, the energy needed to remove an electron pair from the system. (\({E_{0}^{N}}\) and \(E_{0}^{N-2}\) are the ground-state energies of the N and N − 2 electron systems, respectively.)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagy, Á. Time-dependent pair density from the principle of minimum Fisher information. J Mol Model 24, 234 (2018). https://doi.org/10.1007/s00894-018-3775-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3775-8

Keywords

Navigation