Skip to main content
Log in

Analysis of molecular and (di)atomic dual-descriptor functions and matrices

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, the dual-descriptor is studied in matrix form \(f^{(2)}(\mathbf {r},\mathbf {r^{\prime }})\) and both coordinates condensed to atoms, resulting in atomic and diatomic (or where applicable, bond) condensed single values. This double partitioning method of the dual-descriptor matrix is proposed within the Hirshfeld-I atoms-in-molecule framework although it is easily extended to other atoms-in-molecules methods. Diagonalizing the resulting atomic and bond dual-descriptor matrices gives eigenvalues and eigenvectors describing the reactivity of atoms and bonds. The dual-descriptor function is the diagonal element of the underlying matrix. The extra information contained in the atom and bond resolution is highlighted and the effect of choosing either the fragment of molecular response or response of molecular fragment approach is quantified.

Atom and bond condensed dual descriptor matrices and functions are derived from molecular ones using Hirshfeld-I atoms in molecules weight functions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Parr R, Yang W (1989) Density-Functional Theory of Atoms and Molecules. Oxford Science Publications, Oxford

    Google Scholar 

  2. Geerlings P, Proft FD, Langenaeker W (2003) Chem Rev 103:1793–1874

    Article  CAS  Google Scholar 

  3. Chermette H (1999) J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  4. Morell C, Grand A, Toro-Labbe A (2005) J Phys Chem A 109:205–212

    Article  CAS  Google Scholar 

  5. Morell C, Grand A, Toro-Labbe A (2006) Chem Phys Lett 425:342–346

    Article  CAS  Google Scholar 

  6. Geerlings P, De Proft F (2008) Phys Chem Chem Phys 10:3028–3042

    Article  CAS  Google Scholar 

  7. Cardenas C, Ayers PW, Cedillo A (2011) J Chem Phys 134:174103

    Article  Google Scholar 

  8. Bultinck P, Cardenas C, Fuentealba P, Johnson P, Ayers PW (2013) J Chem Theory Comput 9:4779–4788

    Article  CAS  Google Scholar 

  9. Bultinck P, Cardenas C, Fuentealba P, Johnson P, Ayers PW (2014) J Chem Theory Comput 10:202–210

    Article  CAS  Google Scholar 

  10. Yang W, Parr RG, Pucci R (1984) J Chem Phys 81:2862–2863

    Article  CAS  Google Scholar 

  11. Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  12. Ayers P, Levy M (2000) Theor Chem Acc 103:353–360

    Article  CAS  Google Scholar 

  13. Bultinck P, Clarisse D, Ayers PW, Carbó-Dorca R. (2011) Phys Chem Chem Phys 13:6110–6115

    Article  CAS  Google Scholar 

  14. Bultinck P, Van Neck D, Acke G, Ayers PW (2012) Phys Chem Chem Phys 14:2408–2416

    Article  CAS  Google Scholar 

  15. Alcoba DR, Lain L, Torre A, Ona OB, Tiznado W (2012) Chem Phys Lett 549:103–107

    Article  CAS  Google Scholar 

  16. Alcoba DR, Tiznado W, Ona OB, Torre A, Lain L (2012) Chem Phys Lett 533:114–117

    Article  CAS  Google Scholar 

  17. Alcoba DR, Lain L, Torre A, Ona OB, Chamorro E (2013) Phys Chem Chem Phys 15:9594–9604

    Article  CAS  Google Scholar 

  18. Zielinski F, Tognetti V, Joubert L (2012) Chem Phys Lett 527: 67–72

    Article  CAS  Google Scholar 

  19. Oña OB, De Clercq O, Alcoba DR, Torre A, Lain L, Van Neck D, Bultinck P (2016) ChemPhysChem 17:2881–2889

    Article  Google Scholar 

  20. Glossman-Mitnik D (2013) Procedia Comput Sci 18:816–825

    Article  Google Scholar 

  21. Cao J, Ren Q, Chen F, Lu T (2015) Science China-Chemistry 58:1845–1852

    Article  CAS  Google Scholar 

  22. Bultinck P, Fias S, Van Alsenoy C, Ayers PW, Carbó-Dorca R (2007) J Chem Phys 127:034102

    Article  Google Scholar 

  23. Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711

    Article  CAS  Google Scholar 

  24. Gonzalez-Suarez M, Aizman A, Soto-Delgado J, Contreras R (2012) J Org Chem 77:90–95

    Article  CAS  Google Scholar 

  25. Bultinck P, Van Damme S, Cedillo A (2013) J Comput Chem 34:2421–2429

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin K. N., Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian, Inc, Wallingford

  27. Dennington R, Keith T, Millam J (2009) GaussView Version 5, Semichem Inc. Shawnee Mission KS

  28. Vanfleteren D, Van Neck D, Bultinck P, Ayers PW, Waroquier M (2010) J Chem Phys 132:164111

    Article  Google Scholar 

  29. Bultinck P, Van Alsenoy C, Ayers PW, Carbó-Dorca R (2007) J Chem Phys 126:144111

    Article  Google Scholar 

  30. Bader RFW (1991) Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  31. Bader RFW (1990) Atoms in Molecules, A Quantum Theory. Oxford Science Publications, Oxford

    Google Scholar 

Download references

Acknowledgments

D.R.A. and O.B.O. acknowledge the Consejo Nacional de Investigaciones Ciientíficas y Técnicas (Argentina) for research grant 2013-1401PCB. D.R.A. and P.B. acknowledge the Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina) and the FWO Vlaanderen (Belgium) for collaborative research grant VS.0001.14N. D.R.A. acknowledges the Universidad de Buenos Aires (Argentina) and the Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina) for research Grant PIP 11220130100377CO. A.T. and L.L. acknowledge the Universidad del Pais Vasco (Spain) for research Grant No. EHU16/10. O.B.O. acknowledges the Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina) for research Grant No. 11220130100311CO. P.B. acknowledges the support from the Research Foundation Flanders (FWO Vlaanderen). The computational resources and services used in this work were provided by the Universidad de Buenos Aires and the Universidad del Pais Vasco and the Stevin Supercomputer Infrastructure, provided by the VSC (Flemish Supercomputer Center), funded by Ghent University, the Hercules Foundation and the Flemish Government - department EWI. P.B. is a member of the QCMM alliance Ghent-Brussels.

Supporting information

Results corresponding to the compounds included in Fig. 1, except those of the ethylene molecule, which are reported in the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Bultinck.

Additional information

This paper belongs to Topical Collection Festschrift in Honor of Henry Chermette

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 453 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcoba, D.R., Oña, O.B., Torre, A. et al. Analysis of molecular and (di)atomic dual-descriptor functions and matrices. J Mol Model 23, 185 (2017). https://doi.org/10.1007/s00894-017-3334-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3334-8

Keywords

Navigation