Skip to main content
Log in

Theoretical characterization on photoelectric properties of benzothiadiazole- and fluorene-based small molecule acceptor materials for the organic photovoltaics

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The upper efficiency of heterojunction organic photovoltaics depends on the increased open-circuit voltage (V oc) and short-circuit current (J sc). So, a higher lowest unoccupied molecular orbital (LUMO) level is necessary for organic acceptor material to possess higher V oc and more photons absorbsorption in the solar spectrum is needed for larger J sc. In this article, we theoretically designed some small molecule acceptors (2∼5) based on fluorene (F), benzothiadiazole, and cyano group (CN) referring to the reported acceptor material 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile (1), the crucial parameters affecting photoelectrical properties of compounds 2∼5 were evaluated by the density functional theory (DFT) and time dependent density functional theory (TDDFT) methods. The results reveal that compared with 1, 3 and 4 could have the better complementary absorption spectra with P3HT, the increased LUMO level, the improved V oc, and the decreased electronic organization energy (λ e). From the simulation of transition density matrix, it is very clear that the excitons of molecules 3 and 4 are easier to separate in the material surface. Therefore, 3 and 4 may become potential acceptor candidates for organic photovoltaic cells. In addition, with the increased number of CN, the optoelectronic properties of the molecules show a regular change, mainly improve the LUMO level, energy gap, V oc, and absorption intensity. In summary, reasonably adjusting CN can effectively improve the photovoltaic properties of small molecule acceptors.

Structure–property relationship of small molecule acceptors could be rationally evaluated in the article. The changes of conjugate length and CN are important strategies to alter the photovoltaic properties of small molecule acceptors. Therefore, taking the K12/1 as a reference, we have theoretically designed a series of small molecule acceptors (2–4). The calculated results by means of DFT and TDDFT manifest that molecules 3 and 4 have the better complementary absorption spectra with P3HT, the increased LUMO level, the improved V oc, the decreased electronic organization energy and the easier separation in the material surface than 1. In summary, reasonably increasing conjugate length and decreasing CN can effectively improve the PCE, which will provide a theoretical guideline for the design and synthesis of new small molecule acceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Adv Funct Mater 11:15

    Article  CAS  Google Scholar 

  2. Cheng YJ, Yang SH, Hsu CS (2009) Chem Rev 109:5868

    Article  CAS  Google Scholar 

  3. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Dos Santos DA, Brédas JL, Lögdlund M, Salaneck WR (1999) Nature 397:121

    Article  CAS  Google Scholar 

  4. Günes S, Neugebauer H, Sariciftci NS (2007) Chem Rev 107:1324

    Article  Google Scholar 

  5. Kularatne RS, Magurudeniya HD, Sista P, Biewer MC, Stefan MC (2013) J Polym Sci Pol Chem 51:743

    Article  CAS  Google Scholar 

  6. Darling SB, You F (2013) RSC Adv 3:17633

    Article  CAS  Google Scholar 

  7. Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Long G, Yang X, Feng H, Zuo Y, Zhang M, Huang F, Cao Y, Russell TP, Chen Y (2015) J Am Chem Soc 137:3886

    Article  CAS  Google Scholar 

  8. Kan B, Zhang Q, Li M, Wan X, Ni W, Long G, Wang Y, Yang X, Feng H, Chen Y (2014) J Am Chem Soc 136:15529

    Article  CAS  Google Scholar 

  9. Hummelen JC, Knight BW, LePeq F, Wudl F, Yao J, Wilkins CL (1995) J Org Chem 60:532

    Article  CAS  Google Scholar 

  10. Wienk MM, Kroon JM, Verhees WJH, Knol J, Hummelen JC, van Hal PA, Janssen RA (2003) J Angew Chem Int Ed 42:3371

    Article  CAS  Google Scholar 

  11. Yu G, Gao J, Hummelen JC, Wudl F, Heeger A (1995) J Mar Sci 270:1789

    CAS  Google Scholar 

  12. Shin RYC, Kietzke T, Sudhakar S, Dodabalapur A, Chen ZK, Sellinger A (2007) Chem Mater 19:1892

    Article  CAS  Google Scholar 

  13. Sonar P, Ng GM, Lin TT, Dodabalapur A, Chen ZK (2010) J Mater Chem 20:3626

    Article  CAS  Google Scholar 

  14. Woo CH, Holcombe TW, Unruh DA, Sellinger A, Fréchet JM (2010) J Chem Mater 22:1673

    Article  CAS  Google Scholar 

  15. Shu Y, Lim YF, Li Z, Purushothaman B, Hallani R, Kim JE, Parkin SR, Malliaras GG, Anthony JE (2011) Chem Sci 2:363

    Article  CAS  Google Scholar 

  16. Mikroyannidis JA, Suresh P, Sharma GD (2010) Org Electron 11:311

    Article  CAS  Google Scholar 

  17. Kyaw AKK, Wang DH, Gupta V, Zhang J, Chand S, Bazan GC, Heeger A (2013) J Adv Mater 25:2397

    Article  CAS  Google Scholar 

  18. Lin Y, Li Y, Zhan X (2012) Chem Soc Rev 41:4245

    Article  CAS  Google Scholar 

  19. Liu Y, Wan X, Wang F, Zhou J, Long G, Tian J, You J, Yang Y, Chen Y (2011) Adv Energy Mater 1:771–775

    Article  CAS  Google Scholar 

  20. Sun Y, Welch GC, Leong WL, Takacs CJ, Bazan GC, Heeger A (2012) J Nat Mater 11:44

    Article  CAS  Google Scholar 

  21. Zhu XH, Peng J, Cao Y, Roncali J (2011) Chem Soc Rev 40:3509

    Article  CAS  Google Scholar 

  22. Schwenn PE, Gui K, Nardes AM, Krueger KB, Lee KH, Mutkins K, Rubinstein-Dunlop H, Shaw PE, Kopidakis N, Burn PL, Meredith P (2011) Adv Energy Mater 1:73–81

    Article  CAS  Google Scholar 

  23. Krueger KB, Schwenn PE, Gui K, Pivrikas A, Meredith P, Burn PL (2011) Appl Phys Lett 98:083301

    Article  Google Scholar 

  24. Brunetti FG, Gong X, Tong M, Heeger AJ, Wudl F (2010) Angew Chem Int Ed 49:532

    Article  CAS  Google Scholar 

  25. Fang Y, Pandey AK, Nardes AM, Kopidakis N, Burn PL, Meredith P (2013) Adv Energy Mater 3:54

    Article  CAS  Google Scholar 

  26. Kim JH, An BK, Yoon SJ, Park SK, Kwon JE, Lim CK, Park SY (2014) Adv Funct Mater 24:2746

    Article  CAS  Google Scholar 

  27. Wang H, Li F, Ravia I, Gao B, Li Y, Medvedev V, Sun H, Tessler N, Ma Y (2011) Adv Funct Mater 21:3770

    Article  CAS  Google Scholar 

  28. Yoon WS, Park SK, Cho I, Oh JA, Kim JH, Park SY (2013) Adv Funct Mater 23:3519

    Article  CAS  Google Scholar 

  29. Zhou T, Jia T, Kang B, Li F, Fahlman M, Wang Y (2011) Adv Energy Mater 1:431

    Article  CAS  Google Scholar 

  30. Zhou Y, Dai YZ, Zheng YQ, Wang XY, Wang JY, Pei J (2013) Chem Comm 49:5802

    Article  CAS  Google Scholar 

  31. Kuo MY, Chen HY, Chao I (2007) Chem Eur J 13:4750

    Article  CAS  Google Scholar 

  32. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  33. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  34. Cohen AJ, Handy NC (2001) Mol Phys 99:607

    Article  CAS  Google Scholar 

  35. Adamo C, Jacquemin D (2013) Chem Soc Rev 42:845

    Article  CAS  Google Scholar 

  36. Perrier A, Maurel F, Jacquemin D (2012) Acc Chem Res 45:1173

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09W, revision D.01. Gaussian Inc., Wallingford

  38. Rand BP, Burk DP, Forrest SR (2007) Phys Rev B 75:115327

    Article  Google Scholar 

  39. Li SB, Duan YA, Geng Y, Gao HZ, Qiu YQ, Su ZM (2015) RSC Adv 5:29401

    Article  CAS  Google Scholar 

  40. Pan QQ, Li SB, Wu Y, Sun G, Geng Y, Su ZM (2016) RSC Adv 6:81164

    Article  CAS  Google Scholar 

  41. Lu T, Chen F (2012) J Comput Chem 33:580

    Article  Google Scholar 

  42. Duan YA, Geng Y, Li HB, Jin JL, Wu Y, Su ZM (2013) J Comput Chem 34:1611

    Article  CAS  Google Scholar 

  43. Huang JD, Li WL, Wen SH, Dong B (2015) J Comput Chem 36:695

    Article  CAS  Google Scholar 

  44. Delgado MCR, Orduna J, Oliva MM, Casado J, Navarrete JTL (2007) J Chem Phys 127:164704

    Article  Google Scholar 

  45. Garcia G, Granadino-Roldan JM, Hernandez-Laguna A, Garzon A, Fernandez-Gomez M (2013) J Chem Theory Comput 9:2591

    Article  CAS  Google Scholar 

  46. Wang GY, Kan YH, Geng Y, Duan YA, Wang L, Wu HQ, Dong XX, Su ZM (2014) Theor Chem Acc 133:1453

    Article  Google Scholar 

  47. Yang S, Kertesz M (2006) J Phys Chem A 110:9771

    Article  CAS  Google Scholar 

  48. Liao Y, Yang GC, Feng JK, Shi LL, Yang SY, Yang L, Ren AM (2006) J Phys Chem A 110:13036

    Article  CAS  Google Scholar 

  49. Tvingstedt K, Vandewal K, Gadisa A, Zhang F, Manca J, Inganäs O (2009) J Am Chem Soc 131:11819

    Article  CAS  Google Scholar 

  50. Staple DB, Oliver PAK, Hill IG (2014) Phys Rev B 89:1719

    Article  Google Scholar 

  51. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec C (2006) J Adv Mater 18:789

    Article  CAS  Google Scholar 

  52. Nielsen CB, Holliday S, Chen HY, Cryer SJ, McCulloch I (2015) Acc Chem Res 48:2803

    Article  CAS  Google Scholar 

  53. Ko S, Mondal R, Risko C, Lee JK, Hong S, McGehee MD, Brédas JL, Bao Z (2010) Macromolecules 43:6685

    Article  CAS  Google Scholar 

  54. Murphy AR, Fréchet JM (2007) J Chem Rev 107:1066

    Article  CAS  Google Scholar 

  55. Pelzer KM, Darling SB (2016) Mol Syst Des Eng 1:10

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Project No. 21363025) and the Science and Technology Development Project Foundation of Jilin Province (20150101008JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangyan Sun or Yun Geng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, M., Li, S., Pan, Q. et al. Theoretical characterization on photoelectric properties of benzothiadiazole- and fluorene-based small molecule acceptor materials for the organic photovoltaics. J Mol Model 23, 28 (2017). https://doi.org/10.1007/s00894-016-3205-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3205-8

Keywords

Navigation