Skip to main content
Log in

Density functional theory study of small nickel clusters

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The stable geometries and atomization energies for the clusters Ni n (n = 2–5) are predicted with all-electron density functional theory (DFT), using the BMK hybrid functional and a Gaussian basis set. Possible isomers and several spin states of these nickel clusters are considered systematically. The ground spin state and the lowest energy isomers are identified for each cluster size. The results are compared to available experimental and other theoretical data. The molecular orbitals of the largest cluster are plotted for all spin states. The relative stabilities of these states are interpreted in terms of superatom orbitals and no-pair bonding.

The stable geometries and atomization energies for the clusters Ni n (n = 2–5) are predicted with all-electron density functional theory (DFT), using the BMK hybrid functional and a Gaussian basis set. Possible isomers and several spin states of these nickel clusters are systematically considered. The ground spin state and the lowest energy isomers are identified for each cluster size. The results are compared to available experimental and other theoretical data. The molecular orbitals of the largest cluster are plotted for all spin states. The relative stabilities of these states are interpreted in terms of superatom orbitals and no-pair bonding

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ovsitser O, Kondratenko EV (2009) Similarity and differences in the oxidative dehydrogenation of C2–C4 alkanes over nano-sized VOx species using N2O and O2. Catal Today 142:138–142. doi:10.1016/j.cattod.2008.09.012

    Google Scholar 

  2. Uddin J, Morales CM, Maynard JH, Landis CR (2006) Computational studies of metal–ligand bond enthalpies across the transition metal series. Organometallics 25:5566–5581. doi:10.1021/om0603058

    Google Scholar 

  3. Simoes JAM, Beauchamp JL (1990) Transition metal hydrogen and metal carbon bond strengths: the keys to catalysis. Chem Rev 90:629–688

    Google Scholar 

  4. Zubarev DY, Boldyrev AI (2008) Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10:5207–5217. doi:10.1039/b804083d

    Article  CAS  Google Scholar 

  5. Zubarev DY, Boldyrev AI (2009) Deciphering chemical bonding in golden cages. J Phys Chem A 113:866–868. doi:10.1021/jp808103t

    Article  CAS  Google Scholar 

  6. Jensen KP, Roos BO, Ryde U (2007) Performance of density functionals for first row transition metal systems. J Chem Phys 126:014103–014116

    Article  Google Scholar 

  7. Furche F, Perdew JP (2006) The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry. J Chem Phys 124:044103–044129

    Google Scholar 

  8. Harrison JG (1983) Density functional calculations for atoms in the 1st transition Series. J Chem Phys 79:2265–2269

    Google Scholar 

  9. Arvizu GL, Calaminici P (2007) Assessment of density functional theory optimized basis sets for gradient corrected functionals to transition metal systems: the case of small Ni n (n ≤ 5) clusters. J Chem Phys 126:194102–194111. doi:19410210.1063/1.2735311

  10. Kant A (1964) Dissociation energies of diatomic molecules of the transition elements. I. Nickel. J Chem Phys 41:1872–1876

    Google Scholar 

  11. Knickelbein MB, Yang S, Riley SJ (1990) Near-threshold photoionization of nickel clusters: ionization potentials for Ni3 to Ni90. J Chem Phys 93:94–104

    Google Scholar 

  12. Luo CL (2000) The structure of small nickel clusters: Ni2–Ni19. Model Simul Mater Sci Eng 8:95–101

    Google Scholar 

  13. Michelini MC, Diez RP, Jubert AH (2004) Density functional study of the ionization potentials and electron affinities of small Ni n clusters with n = 2–6 and 8. Comput Mater Sci 31:292–298. doi:10.1016/j.commatsci.2004.03.018

    Google Scholar 

  14. Moskovits M, Hulse JE (1977) Ultraviolet-visible spectra of diatomic, triatomic, and higher nickel clusters. J Chem Phys 66:3988–3994

    Google Scholar 

  15. Nygren MA, Siegbahn PEM, Wahlgren U, Akeby H (1992) Theoretical ionization energies and geometries for Ni N (4 ≤ N ≤9). J Phys Chem 96:3633–3640

    Google Scholar 

  16. Onal I, Sayar A, Uzun A, Ozkar S (2009) A density functional study of Ni2 and Ni13 nanoclusters. J Comput Theor Nanos 6:867–872. doi:10.1166/jctn.2009.1119

    Google Scholar 

  17. Parks EK, Zhu L, Ho J, Riley SJ (1994) The structure of small nickel clusters Ni3–Ni15. J Chem Phys 100:7206–7222

    Google Scholar 

  18. Pinegar JC, Langenberg JD, Arrington CA, Spain EM, Morse MD (1995) Ni2 revisited: reassignment of the ground electronic state. J Chem Phys 102:666–674

    Google Scholar 

  19. Reuse FA, Khanna SN (1995) Geometry, electronic-structure, and magnetism of small Ni N (N = 2–6, 8, 13) clusters. Chem Phys Lett 234:77–81

    Google Scholar 

  20. Reuse FA, Khanna SN (1999) Photoabsorption spectrum of small Ni n (n = 2–6, 13) clusters. Eur Phys J D 6:77–81

    Google Scholar 

  21. Pouamerigo R, Merchan M, Nebotgil I, Malmqvist PA, Roos BO (1994) The chemical-bonds in CuH, Cu2, NiH, and Ni2 studied with multiconfigurational 2nd-order perturbation theory. J Chem Phys 101:4893–4902

    Google Scholar 

  22. Grigoryan VG, Springborg M (2004) Structural and energetic properties of nickel clusters: 2 ≤ N ≤ 150. Phys Rev B 70:205415–205429. doi:10.1103/PhysRevB.70.205415

    Google Scholar 

  23. St Petkov P, Vayssilov GN, Kruger S, Rosch N (2006) Structure, stability, electronic and magnetic properties of Ni4 clusters containing impurity atoms. Phys Chem Chem Phys 8:1282–1291. doi:10.1039/b518175e

    Google Scholar 

  24. Xie Z, Ma QM, Liu Y, Li YC (2005) First-principles study of the stability and Jahn–Teller distortion of nickel clusters. Phys Lett A 342:459–467. doi:10.1016/j.physleta.2005.05.067

    Google Scholar 

  25. Boese AD, Martin JML (2004) Development of density functionals for thermochemical kinetics. J Chem Phys 121:3405–3416

    Article  CAS  Google Scholar 

  26. Frisch MJ et al. (1994–2003, 2004) Gaussian 03, revision D.01. Gaussian Inc., Wallingford

  27. Wachters AJ (1970) Gaussian basis set for molecular wavefunctions containing third-row atoms. J Chem Phys 52:1033–1038

    Google Scholar 

  28. Hay PJ (1977) Gaussian basis sets for molecular calculations—representation of 3d orbitals in transition-metal atoms. J Chem Phys 66:4377–4384

    Google Scholar 

  29. Harris J (1985) Simplified method for calculating the energy of weakly interacting fragments. Phys Rev B 31:1770–1779

    Google Scholar 

  30. Goel S, Masunov AE (2008) Potential energy curves and electronic structure of 3d transition metal hydrides and their cations. J Chem Phys 129:214302–14

    Google Scholar 

  31. Goel S, Masunov AE (2008) First-principles study of transition metal diatomics as the first step in multiscale simulations of carbon nanotube growth process. In: 4th Int Conf on Multiscale Material Modeling, Tallahassee, FL, USA, 27–31 Oct 2008, pp 110–113

  32. Rabuck AD, Scuseria GE (1999) Improving self-consistent field convergence by varying occupation numbers. J Chem Phys 110:695–700

    Article  CAS  Google Scholar 

  33. Wang HM, Haouari H, Craig R, Lombardi JR, Lindsay DM (1996) Raman spectra of mass-selected nickel dimers in argon matrices. J Chem Phys 104:3420–3422

    Article  CAS  Google Scholar 

  34. Ham FS (2000) The Jahn–Teller effect: a retrospective view. J Lumin 85:193–197

    Google Scholar 

  35. Jiang DE, Whetten RL, Luo WD, Dai S (2009) The smallest thiolated gold superatom complexes. J Phys Chem C 113:17291–17295. doi:10.1021/jp9035937

    Google Scholar 

  36. Monari A, Pitarch-Ruiz J, Bendazzoli GL, Evangelisti S, Sanchez-Marin J (2010) High-spin states in tetrahedral X4 clusters (X = H, Li, Na, K). Int J Quantum Chem 110:874–884. doi:10.1002/qua.21987

    Google Scholar 

  37. Olson JK, Boldyrev AI (2009) Ab initio search for global minimum structures of the novel B3H y (y = 4–7) neutral and anionic clusters. Inorg Chem 48:10060–10067. doi:10.1021/ic900905h

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by a University of Central Florida (UCF) start-up grant. SG gratefully acknowledges an I2lab fellowship. The computer time was generously provided by the Department of Energy’s (DOE) National Energy Research Scientific Computing Center (NERSC), the Institute for Simulation and Training’s supercomputing facility (STOKES), and the UCF I2lab.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satyender Goel or Artem E. Masunov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goel, S., Masunov, A.E. Density functional theory study of small nickel clusters. J Mol Model 18, 783–790 (2012). https://doi.org/10.1007/s00894-011-1100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1100-x

Keywords

Navigation