Skip to main content
Log in

Combination of APD668, a G protein-coupled receptor 119 agonist with linagliptin, a DPPIV inhibitor, prevents progression of steatohepatitis in a murine model of non-alcoholic steatohepatitis with diabetes

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Non-alcoholic steatohepatitis (NASH) is characterized by the presence of hepatic steatosis, oxidative stress, inflammation, and hepatocyte injury with or without fibrosis. In this study, we explored the effect of APD668, a GPR119 agonist alone or in combination with linagliptin, a DPPIV inhibitor, on the progression of steatohepatitis in a murine model of NASH with diabetes. A novel NASH model with diabetes was generated by administration of streptozotocin injection to neonatal C57BL/6 mice (2–3 days old) combined with a high-fat diet feeding from the age of 4 weeks. The plasma biochemical parameters, oxidative stress, inflammation and histopathological changes were assessed. APD668 alone showed reduction in plasma glucose (− 39%, P < 0.05) and triglyceride level (− 26%) whereas a combined treatment of APD668 with linagliptin resulted in a more pronounced reduction in plasma glucose (− 52%, P < 0.001) and triglyceride (− 50%, P < 0.05) in NASH mice. In addition, co-administration of APD668 with linagliptin demonstrated a significant decrease in hepatic triglyceride, NAS score, hepatic TBARS and hepatic TNF-α in NASH mice with diabetes. These findings suggest that GPR119 receptor agonists in combination with DPPIV inhibitors may represent a promising therapeutic strategy for the treatment of NASH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

NASH:

Non-alcoholic steatohepatitis

NAFLD:

Non-alcoholic fatty liver disease

GLP-1:

Glucagon-like peptide-1

GIP:

Gastric inhibitory peptide

DPPIV:

Dipeptidyl peptidase IV

HFD/STZ:

High-fat diet/streptozotocin

CDAA:

Choline-deficient, l-amino acid-defined

KO:

Knockout

AMPK:

AMP-activated protein kinase

SREBP-1c:

Sterol regulatory element binding protein-1c

SCD-1:

Stearoyl-CoA desaturase

FAS:

Fatty acid synthase

SOCS3:

Suppressor of cytokine signaling 3

ALT:

Alanine aminotransferase

HTF:

High trans-fat

TG:

Triglyceride

TC:

Total cholesterol

TBARS:

Thiobarbituric acid reactants

NAS:

NAFLD activity score

References

  1. Farrell GC, Rooyen DV, Gan L, Chitturi S (2012) NASH is an inflammatory disorder: pathogenic, prognostic and therapeutic implications. Gut Liver 6:149–171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Gaggini M, Morelli M, Buzzigoli E, DeFronzo RA, Bugianesi E, Gastaldelli A (2013) Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients 10:1544–1560

    Article  CAS  Google Scholar 

  3. Perazzo H, Dufour J (2017) The therapeutic landscape of non-alcoholic steatohepatitis. Liver Int 37:634–647

    Article  PubMed  CAS  Google Scholar 

  4. Yang JW, Kim HS, Im JH, Kim JW, Jun DW, Lim SC, Lee K, Choi JM, Kim SK, Kang KW (2016) GPR119: a promising target for nonalcoholic fatty liver disease. FASEB J 30:1–12

    Article  CAS  Google Scholar 

  5. Bahirat UA, Shenoy RR, Goel RN, Nemmani KVS (2017) APD668, a G protein-coupled receptor 119 agonist improves fat tolerance and attenuates fatty liver in high trans-fat diet induced steatohepatitis model in C57BL/6 mice. Eur J Pharmacol 801:35–45

    Article  PubMed  CAS  Google Scholar 

  6. Katz LB, Gambale JJ, Rothenberg PL, Vanapalli SR, Vaccaro N, Xi L, Polidari DC, Vets E, Sarich TC, Stein PP (2011) Pharmacokinetics, pharmacodynamics, safety and tolerability of JNJ-38431055, a novel GPR119 receptor agonist, in healthy male subjects. Clin Pharmacol Ther 90:685–692

    Article  PubMed  CAS  Google Scholar 

  7. Katz LB, Gambale JJ, Rothenberg PL, Vanapalli SR, Vaccaro N, Xi L, Sarich TC, Stein PP (2012) Effects of JNJ-38431055, a novel GPR119 receptor agonist, in randomized, double-blind, placebo-controlled studies in subjects with type 2 diabetes. Diabetes Obes Metab 14:709–716

    Article  PubMed  CAS  Google Scholar 

  8. Moss CE, Glassa LL, Diakogiannakia E, Paisa R, Lenaghanb C, Smithc DK, Wedin M, Bohlooly-Y M, Griblle FM, Reimann F (2016) Lipid derivatives activate GPR119 and trigger GLP-1 secretion in primary murine L-cells. Peptides 77:16–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yoshida S, Tanaka H, Oshima H, Yamazaki T, Yonetoku Y, Ohishi T, Matsui T, Shibasaki M (2010) AS1907417, a novel GPR119 agonist, as an insulinotropic and β-cell preservative agent for the treatment of type 2 diabetes. Biochem Biophys Res Commun 400:745–751

    Article  PubMed  CAS  Google Scholar 

  10. Kim SR, Kim D, Park SH, Kim YS, Kim CH, Ha TY, Yang J, Rhee J (2013) In vivo efficacy of HD0471953: a novel GPR119 agonist for the treatment of type 2 diabetes mellitus. J Diabetes Res 269569:1–7

    Google Scholar 

  11. Nunez DJ, Bush MA, Collins DA, Mcmullen SL, Gillmore D, Poss G, Schott R, Feldman PL (2012) Novel and profound lipid effects of GSK1292263, a potent and selective GPR119 agonist in dyslipidemic subjects. Circulation 126:A9918

    Google Scholar 

  12. Kim M, Kim TH, Cheyong Y, Chae YA, Jung IH, Lee K, Choi SM, Yang JS, Son M, Kang KK (2015) Long-term treatment of DA-1241, a novel GPR119 agonist, improved glucose control via preserved beta cell mass in a progressive diabetic mice model. In: 75th American Diabetes Association, 280–LB

  13. Kang KW, Lee K, Yang JW (2017) Pharmaceutical composition containing GPR119 ligand as active ingredient for preventing or treating non-alcoholic fatty liver disease. Pub. no. US 2017/0049773 A1, 1–25

  14. Yang JW, Kim HS, Choi YW, Kim YM, Kang KW (2018) Therapeutic application of GPR119 ligands in metabolic disorders. Diabetes Obes Metab 20:257–269

    Article  PubMed  CAS  Google Scholar 

  15. Kern M, Klöting N, Niessen HG, Thomas L, Stiller D, Mark M, Klein T, Blüher M (2012) Linagliptin improves insulin sensitivity and hepatic steatosis in diet-induced obesity. PLoS One 7:e38744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Shirakawa J, Fujii H, Ohnuma K, Sato K, Ito Y, Kaji M, Sakamoto E, Koganei M, Sasaki H, Nagashima Y, Amo K, Aoki K, Morimoto C, Takeda E, Terauchi Y (2011) Diet-induced adipose tissue inflammation and liver steatosis are prevented by DPP-4 inhibition in diabetic mice. Diabetes 60:1246–1257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Klein T, Fujii M, Sandel J, Shibazaki Y, Wakamatsu K, Michael M, Yoneyama H (2013) Linagliptin alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis. Med Mol Morphol 47:137–149

    Article  PubMed  CAS  Google Scholar 

  18. Jojima T, Tomotsune T, Iijima T, Akimoto K, Suzuki K, Aso Y (2016) Empagliflozin (an SGLT2 inhibitor), alone or in combination with linagliptin (a DPP–4 inhibitor), prevents steatohepatitis in a novel mouse model of non–alcoholic steatohepatitis and diabetes. Diabetol Metab Syndr 8:1–11

    Article  CAS  Google Scholar 

  19. Balaban YH, Korkusuz P, Simsek H, Gokcan H, Gedikoglu G, Pinar A, Hascelik G, Asan E, Hamaloglu E, Tatar G (2007) Dipeptidyl peptidase IV (DDP IV) in NASH patients. Ann Hepatol 6:242–250

    Article  PubMed  CAS  Google Scholar 

  20. Yilmaz Y, Atug O, Yonal O, Duman D, Ozdogan O, Imeryuz N, Kalayci C (2009) Dipeptidyl peptidase IV inhibitors: therapeutic potential in nonalcoholic fatty liver disease. Med Sci Monit 15:HY1–HY5

    PubMed  CAS  Google Scholar 

  21. Bahirat UA, Shenoy RR, Talwar R, Goel RN, Nemmani KVS (2017) Co-administration of APD668, a G protein-coupled receptor 119 agonist and linagliptin, a DPPIV inhibitor, prevents progression of steatohepatitis in mice fed on a high trans-fat diet. Biochem Biophys Res Commun 495:1608–1613

    Article  PubMed  CAS  Google Scholar 

  22. Fujii M, Shibazaki Y, Wakamatsu K, Honda Y, Kawauchi Y, Suzuki K, Arumugam S, Watanabe K, Ichida T, Asakura H, Yoneyama H (2013) A murine model for non-alcoholic steatohepatitis showing evidence of association between diabetes and hepatocellular carcinoma. Med Mol Morphol 46:141–152

    Article  PubMed  CAS  Google Scholar 

  23. Edvardsson U, Ljungberg A, Lindén D, William-Olsson L, Peilot-Sjögren H, Ahnmark A, Oscarsson J (2006) PPARα activation increases triglyceride mass and adipose differentiation-related protein in hepatocytes. J Lipid Res 47:329–340

    Article  PubMed  CAS  Google Scholar 

  24. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321

    Article  PubMed  Google Scholar 

  25. Clapper JR, Hendricks MD, Gu G, Wittmer C, Dolman CS, Herich J, Athanacio J, Villescaz C, Ghosh SS, Heilig JS, Lowe C, Roth JD (2013) Diet-induced mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment. Am J Physiol Gastrointest Liver Physiol 305:G483–G495

    Article  PubMed  CAS  Google Scholar 

  26. Takahashi Y, Soejima Y, Fukusato F (2012) Animal models of nonalcoholic fatty liver disease nonalcoholic steatohepatitis. World J Gastroenterol 18:2300–2308

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim M, Kim TH, Lee S, Jung I, Chae YN, Yang JS (2017) Effects of DA-1241, a novel GPR119 agonist, on lipid control in disease models mediated by regulating an AMPK/SREBP1c signaling path. In: 77th American Diabetes Association 161–LB

  28. Ding X, Saxena SK, Lin S, Gupta N, Anania FA (2006) Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 43:173–181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ben-Shlomo S, Zvibel I, Shnell M, Shlomai A, Chepurko E, Halpern Z, Barzilai N, Oren R, Fishman S (2011) Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol 54:1214–1223

    Article  PubMed  CAS  Google Scholar 

  30. Ip E, Farrell G, Hall P, Robertson G, Leclercq I (2004) Administration of the potent PPARα agonist, Wy-14,643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology 39:1286–1296

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported and funded by Lupin Limited (Research Park), India. We express our sincere thanks to Mr. Vikram Jadhav, Mr. Shyam Sundar for technical assistance, Mr. Kiran Powale, Mr. Gururaj Vishwase and Dr. Sharad Sharma for their contribution in histopathology analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umakant Ashok Bahirat.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahirat, U.A., Talwar, R., Shenoy, R.R. et al. Combination of APD668, a G protein-coupled receptor 119 agonist with linagliptin, a DPPIV inhibitor, prevents progression of steatohepatitis in a murine model of non-alcoholic steatohepatitis with diabetes. Med Mol Morphol 52, 36–43 (2019). https://doi.org/10.1007/s00795-018-0200-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-018-0200-4

Keywords

Navigation