Skip to main content
Log in

Flux-based level-set method for two-phase flows on unstructured grids

  • Published:
Computing and Visualization in Science

Abstract

In this paper we deal with the application of the flux-based level set method to moving interface computations on unstructured grids. The focus lies on the overcoming of the known difficulties of level set methods, e.g. accurate computations of important geometric properties, reliable and precise reinitialization of the level set function and the adaption of standard discretization methods to the moving boundary case. The basic building block of our approach is the high-resolution flux-based level set method for general advection equation (Frolkovič and Mikula in SIAM J Sci Comput 29(2):579–597, 2007, Frolkovič and Wehner in Comput Vis Sci 12(6):626–650, 2009). We extend this method for the problem of reinitialization of the level set function on unstructured grids by using quadratic interpolation to compute distances for nodes close to the interface. To realize numerical simulation for some applications with moving boundaries, we adapt the approach of ghost fluid method (Gibou and Fedkiw in J Comput Phys 202:577–601, 2005) for unstructured grids. The idea is to describe the development of the moving boundary with a level set formulation while the computational grid remains fixed and the boundary conditions are enforced using some extrapolation. Our main motivation is the numerical solution of two-phase incompressible flow problems. Additionally to previously mentioned steps, we introduce further numerical schemes in the framework of finite volume discretization for the flow. Possible jumps of the pressure and the directional derivative of velocity at the interface are modeled directly within the method using the approach of extended approximation spaces. Besides that, an algorithm for the computations of curvature is considered that exhibits the second order accuracy for some examples. Numerical experiments are provided for the presented methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adalsteinsson, D., Sethian, J.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bänsch, E.: Finite element discretization of the Navier–Stokes equations with a free capillary surface. Numer. Math. 88(2), 203–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1993)

    MATH  Google Scholar 

  4. Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuss, N., Rentz-Reichert, H., Wieners, C.: Ug—a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1, 27–40 (1997)

    Article  MATH  Google Scholar 

  5. Bastian, P., Birken, K., Johannsen, K., Lang, S., Reichenberger, V., Wieners, C., Wittum, G., Wrobel, C.: Parallel solution of partial differential equations with adaptive multigrid methods on unstructured grids. In: Jäger, W., Krause, E. (eds.) High Performance Computing in Science and Engineering, pp. 506–519. Springer, Berlin (2000)

    Google Scholar 

  6. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  7. Chopp, D.L.: Some improvements of the fast marching method. SIAM J. Sci. Comput. 23, 230–244 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Di Pietro, D.A., Lo Forte, S., Parolini, N.: Mass preserving finite element implementations of the level set method. Appl. Numer. Math. 56(9), 1179–1195 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (2002)

    Google Scholar 

  10. Fedkiw, R., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frolkovič, P.: Flux-based methods of characteristics for coupled transport equations in porous media. Comput. Vis. Sci. 6, 173–184 (2004)

    Article  MathSciNet  Google Scholar 

  12. Frolkovič, P., Logashenko, D., Wittum, G.: Flux-based level set method for two-phase flows. In: Eymard, R., Herard, J.-M. (eds.) Finite Volumes for Complex Applications, pp. 422–425. ISTE and Wiley, London (2008)

    Google Scholar 

  13. Frolkovič, P., Mikula, K.: Flux-based level set method: a finite volume method for evolving interfaces. Appl. Numer. Math. 57(4), 436–454 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frolkovič, P., Mikula, K.: High-resolution flux-based level set method. SIAM J. Sci. Comput. 29(2), 579–597 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Frolkovič, P., Wehner, C.: Flux-based level set method on rectangular grids and computation of first arrival time functions. Comput. Vis. Sci. 12(6), 626–650 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Frolkovič, P., Zacharovská, P.: Numerical modeling of dynamic groundwater table using level set formulation. In: Carrera, J. (ed.) XVIII International Conference on Water Resources. CIMNE, Barcelona (2010)

    Google Scholar 

  17. Gibou, F., Fedkiw, R.: A fourth order accurate discretization for the laplace and heat equations on arbitrary domains, with applications to the stefan problem. J. Comput. Phys. 202, 577–601 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ginzburg, I., Wittum, G.: Two-phase flows on interface refined grids modeled with VOF, staggered finite volumes, and spline interpolants. J. Comput. Phys. 166, 302–335 (2001)

    Article  MATH  Google Scholar 

  19. Gross, S., Reichelt, V., Reusken, A.: A finite element based level set method for two-phase incompressible flows. Comput. Vis. Sci. 9(4), 239–257 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gross, S., Reusken, A.: An extended pressure finite element space for two-phase incompressible flows with surface tension. J. Comput. Phys. 224(1), 40–58 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations. Springer, New York (1994)

    Book  MATH  Google Scholar 

  22. Herrmann, M.: A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids. J. Comput. Phys. 227, 2674–2706 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hysing, S.: A new implicit surface tension implementation for interfacial flows. Int. J. Numer. Meth. Fluids 51(6), 659–672 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Iaccarino, G., Mittal, R.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kang, M., Fedkiw, R.P., Liu, X.-D.: A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15, 323–360 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Karimian, S.M., Schneider, G.E.: Pressure-based control-volume finite element method for flow at all speeds. AIAA J. 33(9), 1611–1618 (1995)

    Article  MATH  Google Scholar 

  27. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  28. LeVeque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31, 1019–1044 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Losasso, F., Fedkiw, R., Osher, S.: Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids 35, 995–1010 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Marchandise, E., Geuzaine, P., Chevaugeon, N., Remacle, J.-F.: A stabilized finite element method using a discontinuous level set approach for the computation of bubble dynamics. J. Comput. Phys. 225(1), 949–974 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Marchandise, E., Remacle, J.-F.: A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows. J. Comput. Phys. 219(2), 780–800 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mayo, A.: The fast solution of poisson’s and the biharmonic equations on irregular regions. SIAM J. Numer. Anal. 21, 285–299 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. McCorquodale, P., Colella, P., Johansen, H.: A cartesian grid embedded boundary method for the heat equation on irregular domains. J. Comput. Phys. 173, 620–635 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nägele, S., Wittum, G.: On the influence of different stabilisation methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 224, 100–116 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  36. Olsson, E., Kreiss, G., Zahedi, S.: A conservative level set method for two phase flow II. J. Comput. Phys. 225(1), 785–807 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Olsson, E., Kreiss, G.: A conservative level set method for two phase flow. J. Comput. Phys. 210, 225–246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  39. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

  40. Patankar, S.V.: Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, New York (1980)

    MATH  Google Scholar 

  41. Peskin, C.: Flow Patterns Around Heart Valves: A Digital Computer Method for Solving a Digital Computer Method for Solving Flow Patterns Around Heart Valves: The Equations of Motions. Ph.D. thesis, Albert Einstein College of Medicine, New York, (1972)

  42. Prohl, R.: Numerische Interface-Behandlung mit Anwendung in der Motorenberechnung. Master’s thesis, University of Heidelberg (2010)

  43. Reichert, H., Wittum, G.: Robust multigrid methods for the incompressible Navier–Stokes equations. In: Hackbusch, W., Wittum, G. (eds.) Fast Solvers for Flow Problems: Proceedings of the Tenth GAMM-Seminar Kiel, pp. 216-228. Vieweg+Teubner Verlag (1995). doi:10.1007/978-3-663-14125-9_18

  44. Schneider, G.E., Raw, M.J.: Control volume finite-element method for heat transfer and fluid flow using collocated variables—1. Computational procedure. Numer. Heat Transf. 11, 363–390 (1987)

    MATH  Google Scholar 

  45. Sethian, J.: A marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 93, 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  47. Sonar, T.: On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations: polynomial recovery, accuracy and stencil selection. Comput. Methods Appl. Mech. Eng. 140(1–2), 157–181 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994)

    Article  MATH  Google Scholar 

  49. Sussman, M., Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H., Welcome, M.L.: An adaptive level set approach for incompressible two-phase flows. J. Comput. Phys. 148, 81–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sussman, M., Fatemi, E., Smereka, P., Osher, S.: An improved level set method for incompressible two-phase flows. Comput. Fluids 27(5–6), 663–680 (1998)

    Article  MATH  Google Scholar 

  51. Sussman, M., Ohta, M.: A stable and efficient method for treating surface tension in incompressible two-phase flow. SIAM J. Sci. Comput. 31(4), 2447–2471 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tornberg, A.-K., Engquist, B.: A finite element based level set method for multiphase flow applications. Comput. Vis. Sci. 3, 93–101 (2000)

    Article  MATH  Google Scholar 

  53. Tseng, Y.-H., Ferziger, J.H.: A ghost cell immersed boundary method for flow in complex geometry. J. Comput. Phys. 192, 593–623 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. van der Pijl, S.P., Segal, A., Vuik, C., Wesseling, P.: A mass-conserving level-set method for modelling of multi-phase flows. Int. J. Numer. Methods Fluids 47, 339–361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. van der Pijl, S.P., Segal, A., Vuik, C., Wesseling, P.: Computing three-dimensional two-phase flows with a mass-conserving level set method. Comput. Vis. Sci. 11(4–6), 221–235 (2008)

    Article  MathSciNet  Google Scholar 

  56. Zheng, X., Lowengrub, J., Anderson, A., Cristini, V.: Adaptive unstructured volume remeshing—II: application to two- and three-dimensional level-set simulations of multiphase flow. J. Comput. Phys. 208, 626–650 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy Logashenko.

Additional information

Communicated by Gabriel Wittum.

This work was supported by the Federal Ministry of Education and Research (BMBF) under the projects FKZ 02E10326 and 03SF0346D. The first author was supported by the Grant VEGA 1/0728/15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolkovič, P., Logashenko, D. & Wehner, C. Flux-based level-set method for two-phase flows on unstructured grids. Comput. Visual Sci. 18, 31–52 (2016). https://doi.org/10.1007/s00791-016-0269-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-016-0269-z

Keywords

Navigation