Skip to main content
Log in

Neuroanatomical changes associated with conduct disorder in boys: influence of childhood maltreatment

  • Original Contribution
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

Childhood maltreatment (CM) poses a serious risk to the physical, emotional and psychological well-being of children, and can advance the development of maladaptive behaviors, including conduct disorder (CD). CD involves repetitive, persistent violations of others’ basic rights and societal norms. Little is known about whether and how CM influences the neural mechanisms underlying CD, and CD-characteristic neuroanatomical changes have not yet been defined in a structural magnetic resonance imaging (sMRI) study. Here, we used voxel-based morphometry (VBM) and surface-based morphometry (SBM) to investigate the influence of the CD diagnosis and CM on the brain in 96 boys diagnosed with CD (62 with CM) and 86 typically developing (TD) boys (46 with CM). The participants were 12–17 years of age. Compared to the CM− CD group, the CM+ CD group had structural gray matter (GM) alterations in the fronto-limbic regions, including the left amygdala, right posterior cingulate cortex (PCC), right putamen, right dorsolateral prefrontal cortex (dlPFC) and right anterior cingulate cortex (ACC). We also found boys with CD exhibited increased GM volume in bilateral dorsomedial prefrontal cortex (dmPFC), as well as decreased GM volume and decreased gyrification in the left superior temporal gyrus (STG) relative to TD boys. Regional GM volume correlated with aggression and conduct problem severity in the CD group, suggesting that the GM changes may contribute to increased aggression and conduct problems in boys with CD who have suffered CM. In conclusion, these results demonstrate previously unreported CM-associated distinct brain structural changes among CD-diagnosed boys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. American Psychiatry Association (2013) Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub

  2. Polanczyk GV, Salum GA, Sugaya LS, Caye A, Rohde LA (2015) Annual Research Review: a meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. J Child Psychol Psychiatry 56(3):345–365. https://doi.org/10.1111/jcpp.12381

    Article  PubMed  Google Scholar 

  3. Copeland W, Shanahan L, Costello EJ, Angold A (2011) Cumulative prevalence of psychiatric disorders by young adulthood: a prospective cohort analysis from the Great Smoky Mountains Study. J Am Acad Child Adolesc Psychiatry 50(3):252–261

    Article  PubMed  PubMed Central  Google Scholar 

  4. Noordermeer SD, Luman M, Oosterlaan J (2016) A systematic review and meta-analysis of neuroimaging in oppositional defiant disorder (ODD) and conduct disorder (CD) taking attention-deficit hyperactivity disorder (ADHD) into account. Neuropsychol Rev 26(1):44–72. https://doi.org/10.1007/s11065-015-9315-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rogers JC, De Brito SA (2016) Cortical and subcortical gray matter volume in youths with conduct problems: a meta-analysis. JAMA Psychiatry 73(1):64–72. https://doi.org/10.1001/jamapsychiatry.2015.2423

    Article  PubMed  Google Scholar 

  6. De Brito SA, Mechelli A, Wilke M, Laurens KR, Jones AP, Barker GJ, Hodgins S, Viding E (2009) Size matters: Increased grey matter in boys with conduct problems and callous–unemotional traits. Brain 132(4):843–852

    Article  PubMed  Google Scholar 

  7. Fairchild G, Hagan CC, Walsh ND, Passamonti L, Calder AJ, Goodyer IM (2013) Brain structure abnormalities in adolescent girls with conduct disorder. J Child Psychol Psychiatry 54(1):86–95

    Article  PubMed  Google Scholar 

  8. Jiang Y, Guo X, Zhang J, Gao J, Wang X, Situ W, Yi J, Zhang X, Zhu X, Yao S (2015) Abnormalities of cortical structures in adolescent-onset conduct disorder. Psychol Med 45(16):3467–3479

    Article  CAS  PubMed  Google Scholar 

  9. Frick PJ, White SF (2008) Research review: The importance of callous-unemotional traits for developmental models of aggressive and antisocial behavior. J Child Psychol Psychiatry 49(4):359–375

    Article  PubMed  Google Scholar 

  10. Fairchild G, Toschi N, Hagan CC, Goodyer IM, Calder AJ, Passamonti L (2015) Cortical thickness, surface area, and folding alterations in male youths with conduct disorder and varying levels of callous–unemotional traits. NeuroImage Clin 8:253–260

    Article  PubMed  PubMed Central  Google Scholar 

  11. Alegria AA, Radua J, Rubia K (2016) Meta-analysis of fMRI studies of disruptive behavior disorders. Am J Psychiatry 173(11):1119–1130

    Article  PubMed  Google Scholar 

  12. Fanti KA (2018) Understanding heterogeneity in conduct disorder: a review of psychophysiological studies. Neurosci Biobehav Rev 91:4–20

    Article  PubMed  Google Scholar 

  13. Moffitt TE, Order IA, Arseneault L, Jaffee SR, Kim-Cohen J, Koenen KC, Odgers CL, Slutske WS, Viding E (2008) Research review: DSM-V conduct disorder: research needs for an evidence base. J Child Psychol Psychiatry 49(1):3–33

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fanti KA, Kimonis ER, Hadjicharalambous M-Z, Steinberg L (2016) Do neurocognitive deficits in decision making differentiate conduct disorder subtypes? Eur Child Adolesc Psychiatry 25(9):989–996

    Article  PubMed  Google Scholar 

  15. Connor DF, Ford JD, Albert DB, Doerfler LA (2007) Conduct disorder subtype and comorbidity. Ann Clin Psychiatry 19(3):161–168

    Article  PubMed  Google Scholar 

  16. Hill J, Maughan B (2001) Conduct disorders in childhood and adolescence. Cambridge University Press, Cambridge

    Google Scholar 

  17. Carliner H, Gary D, Mclaughlin KA, Keyes KM (2017) Trauma exposure and externalizing disorders in adolescents: results from the national comorbidity survey adolescent supplement. J Am Acad Child Adolesc Psychiatry 56(9):755

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cuevas CA, Finkelhor D, Turner HA, Ormrod RK (2007) Juvenile delinquency and victimization: a theoretical typology. J Interpers Violence 22(12):1581–1602

    Article  PubMed  Google Scholar 

  19. Herrenkohl TI, Kosterman R, Mason WA, Hawkins JD, McCarty CA, McCauley E (2010) Effects of childhood conduct problems and family adversity on health, health behaviors, and service use in early adulthood: tests of developmental pathways involving adolescent risk taking and depression. Dev Psychopathol 22(3):655–665

    Article  PubMed  PubMed Central  Google Scholar 

  20. Twardosz S, Lutzker JR (2010) Child maltreatment and the developing brain: a review of neuroscience perspectives. Aggress Violent Beh 15(1):59–68

    Article  Google Scholar 

  21. Teicher MH, Samson JA, Anderson CM, Ohashi K (2016) The effects of childhood maltreatment on brain structure, function and connectivity. Nat Rev Neurosci 17(10):652

    Article  CAS  PubMed  Google Scholar 

  22. Teicher MH, Samson JA (2013) Childhood maltreatment and psychopathology: a case for ecophenotypic variants as clinically and neurobiologically distinct subtypes. Am J Psychiatry 170(10):1114–1133

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hart H, Rubia K (2012) Neuroimaging of child abuse: a critical review. Front Hum Neurosci 6:52. https://doi.org/10.3389/fnhum.2012.00052

    Article  PubMed  PubMed Central  Google Scholar 

  24. Smaragdi A, Cornwell H, Toschi N, Riccelli R, Gonzalez-Madruga K, Wells A, Clanton R, Baker R, Rogers J, Martin-Key N (2017) Sex differences in the relationship between conduct disorder and cortical structure in adolescents. J Am Acad Child Adolesc Psychiatry 56(8):703–712

    Article  PubMed  Google Scholar 

  25. First MB, Spitzer RL, Gibbon M, Williams JB (2002) Structured clinical interview for DSM-IV-TR axis I disorders, research version, patient edition. SCID-I/P, New York

    Google Scholar 

  26. Zhang J, Zhu X, Wang X, Gao J, Shi H, Huang B, Situ W, Yi J, Zhu X, Yao S (2014) Increased structural connectivity in corpus callosum in adolescent males with conduct disorder. J Am Acad Child Adolescent Psychiatry 53(4):466–475

    Article  Google Scholar 

  27. Shi Q, Zhang J, Xu F, Phillips MR, Xu Y, Fu Y, Gu W, Zhou X, Wang S, Zhang Y (2005) Epidemiological survey of mental illnesses in the people aged 15 and older in Zhejiang Province, China. Chin J Prevent Med 39(4):229–236

    Google Scholar 

  28. Gong Y-x, Cai T (1993) Wechsler intelligence scale for children, Chinese revision (C-WISC). Hunan Map Press, China

    Google Scholar 

  29. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  CAS  PubMed  Google Scholar 

  30. Bernstein DP, Fink L (1998) Childhood trauma questionnaire: a retrospective self-report: Manual. Harcourt Brace & Company, San Diego

    Google Scholar 

  31. Bernstein DP, Stein JA, Newcomb MD, Edward W, David P, Taruna A, John S, Leonard H, Martha M, David D (2003) Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abuse Negl 27(2):169–190

    Article  PubMed  Google Scholar 

  32. Hu M, Wang M, Cai L, Zhu X, Yao S (2012) Development of subjective socioeconomic status scale for Chinese adolescents. Chin J Clin Psychol 20(2):155–161

    Google Scholar 

  33. Radloff LS (1991) The use of the center for epidemiologic studies depression scale in adolescents and young adults. J Youth Adolesc 20(2):149–166. https://doi.org/10.1007/BF01537606

    Article  CAS  PubMed  Google Scholar 

  34. March JS, Parker JD, Sullivan K, Stallings P, Conners CK (1997) The multidimensional anxiety scale for children (MASC): factor structure, reliability, and validity. J Am Acad Child Adolesc Psychiatry 36(4):554–565

    Article  CAS  PubMed  Google Scholar 

  35. Yao S, Zou T, Zhu X, Abela JR, Auerbach RP, Tong X (2007) Reliability and validity of the Chinese version of the multidimensional anxiety scale for children among Chinese secondary school students. Child Psychiatry Hum Dev 38(1):1–16

    Article  PubMed  Google Scholar 

  36. Goodman R (2001) Psychometric properties of the strengths and difficulties questionnaire. J Am Acad Child Adolesc Psychiatry 40(11):1337–1345

    Article  CAS  PubMed  Google Scholar 

  37. Yao S, Zhang C, Zhu X, Jing X, McWhinnie CM, Abela JR (2009) Measuring adolescent psychopathology: psychometric properties of the self-report strengths and difficulties questionnaire in a sample of Chinese adolescents. J Adolesc Health 45(1):55–62

    Article  PubMed  Google Scholar 

  38. Buss AH, Perry M (1992) The aggression questionnaire. J Pers Soc Psychol 63(3):452

    Article  CAS  PubMed  Google Scholar 

  39. Gaser C, Dahnke R (2016) CAT-a computational anatomy toolbox for the analysis of structural MRI data. HBM 2016:336–348

    Google Scholar 

  40. Wilke M, Holland SK, Altaye M, Gaser C (2008) Template-O-Matic: a toolbox for creating customized pediatric templates. Neuroimage 41(3):903–913

    Article  PubMed  Google Scholar 

  41. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95–113

    Article  PubMed  Google Scholar 

  42. Ridgway GR, Omar R, Ourselin S, Hill DLG, Warren JD, Fox NC (2009) Issues with threshold masking in voxel-based morphometry of atrophied brains. Neuroimage 44(1):99–111

    Article  PubMed  Google Scholar 

  43. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289

    Article  CAS  PubMed  Google Scholar 

  44. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233–1239

    Article  PubMed  Google Scholar 

  45. Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4(1):58–73

    Article  CAS  PubMed  Google Scholar 

  46. Bishop SJ (2008) Neural mechanisms underlying selective attention to threat. Ann N Y Acad Sci 1129(1):141–152

    Article  PubMed  Google Scholar 

  47. Shamay-Tsoory SG, Aharon-Peretz J, Perry D (2009) Two systems for empathy: a double dissociation between emotional and cognitive empathy in inferior frontal gyrus versus ventromedial prefrontal lesions. Brain 132(3):617–627

    Article  PubMed  Google Scholar 

  48. Davidson RJ, Putnam KM, Larson CL (2000) Dysfunction in the neural circuitry of emotion regulation–a possible prelude to violence. Science 289(5479):591–594

    Article  CAS  PubMed  Google Scholar 

  49. McClure SM, York MK, Montague PR (2004) The neural substrates of reward processing in humans: the modern role of FMRI. The Neuroscientist 10(3):260–268

    Article  PubMed  Google Scholar 

  50. Sterzer P, Stadler C, Krebs A, Kleinschmidt A, Poustka F (2005) Abnormal neural responses to emotional visual stimuli in adolescents with conduct disorder. Biol Psychiatry 57(1):7–15. https://doi.org/10.1016/j.biopsych.2004.10.008

    Article  PubMed  Google Scholar 

  51. Hwang S, Nolan ZT, White SF, Williams WC, Sinclair S, Blair R (2016) Dual neurocircuitry dysfunctions in disruptive behavior disorders: emotional responding and response inhibition. Psychol Med 46(7):1485–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Amaral DG (2003) The amygdala, social behavior, and danger detection. Ann N Y Acad Sci 1000(1):337–347

    Article  PubMed  Google Scholar 

  53. Pillay SS, Gruber SA, Rogowska J, Simpson N, Yurgelun-Todd DA (2006) fMRI of fearful facial affect recognition in panic disorder: the cingulate gyrus–amygdala connection. J Affect Disord 94(1–3):173–181

    Article  PubMed  Google Scholar 

  54. Howell BR, Grand AP, McCormack KM, Shi Y, LaPrarie JL, Maestripieri D, Styner MA, Sanchez MM (2014) Early adverse experience increases emotional reactivity in juvenile rhesus macaques: relation to amygdala volume. Dev Psychobiol 56(8):1735–1746

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mehta MA, Golembo NI, Nosarti C, Colvert E, Mota A, Williams SC, Rutter M, Sonuga-Barke EJ (2009) Amygdala, hippocampal and corpus callosum size following severe early institutional deprivation: the English and Romanian Adoptees study pilot. J Child Psychol Psychiatry 50(8):943–951

    Article  PubMed  Google Scholar 

  56. Tottenham N, Hare TA, Quinn BT, McCarry TW, Nurse M, Gilhooly T, Millner A, Galvan A, Davidson MC, Eigsti IM (2010) Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Develop Sci 13(1):46–61

    Article  Google Scholar 

  57. Tottenham N, Hare T, Millner A, Gilhooly T, Zevin J, Casey B (2011) Elevated amygdala response to faces following early deprivation. Develop Sci 14(2):190–204

    Article  CAS  Google Scholar 

  58. McCrory EJ, De Brito SA, Sebastian CL, Mechelli A, Bird G, Kelly PA, Viding E (2011) Heightened neural reactivity to threat in child victims of family violence. Curr Biol 21(23):R947–R948

    Article  CAS  PubMed  Google Scholar 

  59. Grant MM, Cannistraci C, Hollon SD, Gore J, Shelton R (2011) Childhood trauma history differentiates amygdala response to sad faces within MDD. J Psychiatr Res 45(7):886–895

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bogdan R, Williamson DE, Hariri AR (2012) Mineralocorticoid receptor Iso/Val (rs5522) genotype moderates the association between previous childhood emotional neglect and amygdala reactivity. Am J Psychiatry 169(5):515–522

    Article  PubMed  PubMed Central  Google Scholar 

  61. van Harmelen A-L, van Tol M-J, Demenescu LR, van der Wee NJ, Veltman DJ, Aleman A, van Buchem MA, Spinhoven P, Penninx BW, Elzinga BM (2012) Enhanced amygdala reactivity to emotional faces in adults reporting childhood emotional maltreatment. Soc Cognit Affect Neurosci 8(4):362–369

    Article  Google Scholar 

  62. Decety J, Michalska KJ, Akitsuki Y, Lahey BB (2009) Atypical empathic responses in adolescents with aggressive conduct disorder: a functional MRI investigation. Biol Psychol 80(2):203–211

    Article  PubMed  Google Scholar 

  63. Herpertz SC, Huebner T, Marx I, Vloet TD, Fink GR, Stoecker T, Jon Shah N, Konrad K, Herpertz-Dahlmann B (2008) Emotional processing in male adolescents with childhood-onset conduct disorder. J Child Psychol Psychiatry 49(7):781–791

    Article  PubMed  Google Scholar 

  64. Marsh AA, Finger EC, Fowler KA, Jurkowitz IT, Schechter JC, Henry HY, Pine DS, Blair R (2011) Reduced amygdala–orbitofrontal connectivity during moral judgments in youths with disruptive behavior disorders and psychopathic traits. Psychiatry Res Neuroimaging 194(3):279–286

    Article  Google Scholar 

  65. Blair RJR (2007) The amygdala and ventromedial prefrontal cortex in morality and psychopathy. Trends Cogn Sci 11(9):387–392

    Article  CAS  PubMed  Google Scholar 

  66. Tricomi EM, Delgado MR, Fiez JA (2004) Modulation of caudate activity by action contingency. Neuron 41(2):281–292. https://doi.org/10.1016/S0896-6273(03)00848-1

    Article  CAS  PubMed  Google Scholar 

  67. Balleine BW, Delgado MR, Hikosaka O (2007) The role of the dorsal striatum in reward and decision-making. J Neurosci 27(31):8161–8165. https://doi.org/10.1523/jneurosci.1554-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Takiguchi S, Fujisawa TX, Mizushima S, Saito DN, Okamoto Y, Shimada K, Koizumi M, Kumazaki H, Jung M, Kosaka H (2015) Ventral striatum dysfunction in children and adolescents with reactive attachment disorder: functional MRI study. Bjpsych Open 1(2):121–128

    Article  PubMed  PubMed Central  Google Scholar 

  69. Peverill M, Sheridan MA, McLaughlin KA, Alves S (2015) Child maltreatment and neural systems underlying emotion regulation. J Am Acad Child Adolesc Psychiatry 54:753–762

    Article  PubMed  PubMed Central  Google Scholar 

  70. Frith CD, Frith U (2007) Social cognition in humans. Curr Biol 17(16):R724-732. https://doi.org/10.1016/j.cub.2007.05.068

    Article  CAS  PubMed  Google Scholar 

  71. Mahy CE, Moses LJ, Pfeifer JH (2014) How and where: theory-of-mind in the brain. Dev Cogn Neurosci 9:68–81. https://doi.org/10.1016/j.dcn.2014.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cohen RA, Grieve S, Hoth KF, Paul RH, Sweet L, Tate D, Gunstad J, Stroud L, McCaffery J, Hitsman B (2006) Early life stress and morphometry of the adult anterior cingulate cortex and caudate nuclei. Biol Psychiat 59(10):975–982

    Article  PubMed  Google Scholar 

  73. Liao M, Yang F, Zhang Y, He Z, Song M, Jiang T, Li Z, Lu S, Wu W, Su L, Li L (2013) Childhood maltreatment is associated with larger left thalamic gray matter volume in adolescents with generalized anxiety disorder. PLoS ONE 8(8):e71898. https://doi.org/10.1371/journal.pone.0071898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Teicher MH, Samson JA (2016) Annual research review: enduring neurobiological effects of childhood abuse and neglect. J Child Psychol Psychiatry 57(3):241–266

    Article  PubMed  PubMed Central  Google Scholar 

  75. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nature Rev Neuroence 3(3):201–215

    Article  CAS  Google Scholar 

  76. Sturm VE, Haase CM, Levenson RW (2016) Chapter 22—emotional dysfunction in psychopathology and neuropathology: neural and genetic pathways. In: Lehner T, Miller BL, State MW (eds) Genomics, circuits, and pathways in clinical neuropsychiatry. Academic Press, San Diego, pp 345–364. https://doi.org/10.1016/B978-0-12-800105-9.00022-6

  77. Hanson JL, Chung MK, Avants BB, Shirtcliff EA, Gee JC, Davidson RJ, Pollak SD (2010) Early stress is associated with alterations in the orbitofrontal cortex: a tensor-based morphometry investigation of brain structure and behavioral risk. J Neurosci 30(22):7466–7472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Andersen SL, Tomada A, Vincow ES, Valente E, Polcari A, Teicher MH (2008) Preliminary evidence for sensitive periods in the effect of childhood sexual abuse on regional brain development. J Neuropsychiatry Clin Neurosci 20(3):292–301

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tomoda A, Navalta CP, Polcari A, Sadato N, Teicher MH (2009) Childhood sexual abuse is associated with reduced gray matter volume in visual cortex of young women. Biol Psychiat 66(7):642–648

    Article  PubMed  Google Scholar 

  80. Silvers JA, Wager TD, Jochen W, Ochsner KN (2015) The neural bases of uninstructed negative emotion modulation. Soc Cognit Affect Neurosci 1:10

    Article  Google Scholar 

  81. Ochsner KN, Silvers JA, Buhle JT (2015) Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann N Y Acad Sci 1251:1

    Article  Google Scholar 

  82. Lee V, Hoaken PN (2007) Cognition, emotion, and neurobiological development: mediating the relation between maltreatment and aggression. Child Maltreatment 12(3):281–298

    Article  PubMed  Google Scholar 

  83. Stuss D, Levine B, Alexander M, Hong J, Palumbo C, Hamer L, Murphy K, Izukawa D (2000) Wisconsin card sorting test performance in patients with focal frontal and posterior brain damage: effects of lesion location and test structure on separable cognitive processes. Neuropsychologia 38(4):388–402

    Article  CAS  PubMed  Google Scholar 

  84. Smith AB, Taylor E, Brammer M, Rubia K (2004) Neural correlates of switching set as measured in fast, event-related functional magnetic resonance imaging. Hum Brain Mapp 21(4):247–256

    Article  PubMed  PubMed Central  Google Scholar 

  85. Fornito A, Wood SJ, Whittle S, Fuller J, Adamson C, Saling MM, Velakoulis D, Pantelis C, Yücel M (2008) Variability of the paracingulate sulcus and morphometry of the medial frontal cortex: associations with cortical thickness, surface area, volume, and sulcal depth. Hum Brain Mapp 29(2):222–236

    Article  PubMed  Google Scholar 

  86. Baker LM, Williams LM, Korgaonkar MS, Cohen RA, Heaps JM, Paul RH (2013) Impact of early vs late childhood early life stress on brain morphometrics. Brain Imaging Behavior 7(2):196–203

    Article  PubMed  Google Scholar 

  87. O’Doherty JP (2004) Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr Opin Neurobiol 14(6):769–776

    Article  PubMed  CAS  Google Scholar 

  88. Hooker CI, Verosky SC, Germine LT, Knight RT, D’Esposito M (2010) Neural activity during social signal perception correlates with self-reported empathy. Brain Res 1308:100–113

    Article  CAS  PubMed  Google Scholar 

  89. Leslie KR, Johnson-Frey SH, Grafton ST (2004) Functional imaging of face and hand imitation: towards a motor theory of empathy. Neuroimage 21(2):601–607

    Article  PubMed  Google Scholar 

  90. Northoff G, Bermpohl F (2004) Cortical midline structures and the self. Trends Cognit Sci 8(3):102–107

    Article  Google Scholar 

  91. Hyatt CJ, Haney-Caron E, Stevens MC (2012) Cortical thickness and folding deficits in conduct-disordered adolescents. Biol Psychiat 72(3):207–214

    Article  PubMed  Google Scholar 

  92. Andersen SL, Teicher MH (2004) Delayed effects of early stress on hippocampal development. Neuropsychopharmacology 29(11):1988

Download references

Acknowledgements

This study was supported by grants from the National Nature Science Foundation of China (Grant no. 81471384). Yidian Gao is funded by the Fundamental Research Funds for the Central Universities of Central South University (no. 2016zzts140). The funding agencies have no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. We would like to thank our participants and their families for taking part in the study. We are also grateful to the clinicians and teachers for their assistance with recruitment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqiao Yao.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

The study was approved by the Ethics Committee of the Second Xiangya Hospital of Central South University (No. CSMC-2009S167) and has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1026 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Jiang, Y., Ming, Q. et al. Neuroanatomical changes associated with conduct disorder in boys: influence of childhood maltreatment. Eur Child Adolesc Psychiatry 31, 601–613 (2022). https://doi.org/10.1007/s00787-020-01697-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00787-020-01697-z

Keywords

Navigation