Skip to main content

Advertisement

Log in

Macrophages skew towards M1 profile through reduced CD163 expression in symptomatic apical periodontitis

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

To explore the macrophage profiles in symptomatic and asymptomatic forms of AP through phenotypic and functional analyses.

Material and methods

Cross-sectional study. Apical tissue/lesion samples were collected from patients with clinical diagnosis of AAP (n = 51) or SAP (n = 45) and healthy periodontal ligament (HPL) from healthy patients as controls (n = 14), all with indication of tooth extraction. Samples were digested, cells were stained for CD14, M1 (CD64, CD80), and M2 (CD163, CD206) phenotypic surface markers and analyzed by flow cytometry. Functional cytokine profiles L-6, IL-12, TNF-α, IL-23 (M1), IL-10, and TGF-β (M2) were determined by qPCR.

Results

Higher macrophage M1/M2 ratio (CD64+CD80+/CD163+CD206+) along with lower CD163 mean fluorescence intensity (MFI) were found in SAP compared to AAP and controls (p < 0.05). IL-6, IL-12, TNF-α, IL-23 (M1), and IL-10 mRNA (M2) were upregulated, whereas TGF-β mRNA (M2) was downregulated in apical lesions compared to controls. Specifically, IL-6 and IL-23 (M1) were upregulated in SAP compared with AAP and controls (p < 0.05). The data were analyzed with Kruskal-Wallis test.

Conclusions

Macrophages exhibited a polarization switch towards M1 in AL. SAP exhibited a reduced M2 differentiation profile based on a reduction of CD163 expression levels in SAP over AAP. Specifically, IL-6 and IL-23 were augmented SAP over AAP, suggesting a role in the severity of apical lesions.

Clinical relevance

Deciphering the macrophage polarization and functions in apical periodontitis can contribute to explain AP dynamics, its clinical presentation and systemic impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hargreaves KM, Goodis HE, Tay FR (2012) Seltzer and Bender’s dental pulp. Quintessence 213:141. https://doi.org/10.1038/sj.bdj.2012.717

    Article  Google Scholar 

  2. Gomes MS, Blattner TC, Sant'Ana Filho M, Grecca FS, Hugo FN, Fouad AF, Reynolds MA (2013) Can apical periodontitis modify systemic levels of inflammatory markers? A systematic review and meta-analysis. J Endod 39:1205–1217. https://doi.org/10.1016/j.joen.2013.06.014

    Article  PubMed  Google Scholar 

  3. Segura-Egea JJ, Martin-Gonzalez J, Cabanillas-Balsera D, Fouad AF, Velasco-Ortega E, Lopez-Lopez J (2016) Association between diabetes and the prevalence of radiolucent periapical lesions in root-filled teeth: systematic review and meta-analysis. Clin Oral Investig 20:1133–1141. https://doi.org/10.1007/s00784-016-1805-4

    Article  PubMed  Google Scholar 

  4. Garrido M, Dezerega A, Bordagaray MJ, Reyes M, Vernal R, Melgar-Rodriguez S, Ciuchi P, Paredes R, Garcia-Sesnich J, Ahumada-Montalva P, Hernandez M (2015) C-reactive protein expression is up-regulated in apical lesions of endodontic origin in association with interleukin-6. J Endod 41:464–469. https://doi.org/10.1016/j.joen.2014.12.021

    Article  PubMed  Google Scholar 

  5. Buonavoglia A, Latronico F, Pirani C, Greco MF, Corrente M, Prati C (2013) Symptomatic and asymptomatic apical periodontitis associated with red complex bacteria: clinical and microbiological evaluation. Odontology 101:84–88. https://doi.org/10.1007/s10266-011-0053-y

    Article  PubMed  Google Scholar 

  6. Gutmann JL, Baumgartner JC, Gluskin AH, Hartwell GR, Walton RE (2009) Identify and define all diagnostic terms for periapical/periradicular health and disease states. J Endod 35:1658–1674. https://doi.org/10.1016/j.joen.2009.09.028

    Article  PubMed  Google Scholar 

  7. Hsiao WW, Li KL, Liu Z, Jones C, Fraser-Liggett CM, Fouad AF (2012) Microbial transformation from normal oral microbiota to acute endodontic infections. BMC Genomics 13:345. https://doi.org/10.1186/1471-2164-13-345

    Article  PubMed  PubMed Central  Google Scholar 

  8. Prso IB, Kocjan W, Simic H, Brumini G, Pezelj-Ribaric S, Borcic J, Ferreri S, Karlovic IM (2007) Tumor necrosis factor-alpha and interleukin 6 in human periapical lesions. Mediat Inflamm 2007:38210–38214. https://doi.org/10.1155/2007/38210

    Article  Google Scholar 

  9. Salinas-Munoz M, Garrido-Flores M, Baeza M, Huaman-Chipana P, Garcia-Sesnich J, Bologna R, Vernal R, Hernandez M (2017) Bone resorptive activity in symptomatic and asymptomatic apical lesions of endodontic origin. Clin Oral Investig 21:2613–2618. https://doi.org/10.1007/s00784-017-2062-x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fernández A, Cardenas AM, Astorga J, Veloso P, Alvarado A, Merino P, Pino D, Reyes-Court D, Hernandez M (2019) Expression of toll-like receptors 2 and 4 and its association with matrix metalloproteinases in symptomatic and asymptomatic apical periodontitis. Clin Oral Investig 23:4205–4212. https://doi.org/10.1007/s00784-019-02861-9

    Article  PubMed  Google Scholar 

  11. Menezes R, Garlet TP, Letra A, Bramante CM, Campanelli AP, Figueira Rde C, Sogayar MC, Granjeiro JM, Garlet GP (2008) Differential patterns of receptor activator of nuclear factor kappa B ligand/osteoprotegerin expression in human periapical granulomas: possible association with progressive or stable nature of the lesions. J Endod 34:932–938. https://doi.org/10.1016/j.joen.2008.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cavalla F, Reyes M, Vernal R, Alvarez C, Paredes R, Garcia-Sesnich J, Infante M, Farina V, Barron I, Hernandez M (2013) High levels of CXC ligand 12/stromal cell-derived factor 1 in apical lesions of endodontic origin associated with mast cell infiltration. J Endod 39:1234–1239. https://doi.org/10.1016/j.joen.2013.06.020

    Article  PubMed  Google Scholar 

  13. Holden JA, Attard TJ, Laughton KM, Mansell A, O'Brien-Simpson NM, Reynolds EC (2014) Porphyromonas gingivalis lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages but induces inflammatory cytokines. Infect Immun 82:4190–4203. https://doi.org/10.1128/IAI.02325-14

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sima C, Glogauer M (2013) Macrophage subsets and osteoimmunology: tuning of the immunological recognition and effector systems that maintain alveolar bone. Periodontol 2000(63):80–101. https://doi.org/10.1111/prd.12032

    Article  Google Scholar 

  15. Dezerega A, Madrid S, Mundi V, Valenzuela MA, Garrido M, Paredes R, Garcia-Sesnich J, Ortega AV, Gamonal J, Hernandez M (2012) Pro-oxidant status and matrix metalloproteinases in apical lesions and gingival crevicular fluid as potential biomarkers for asymptomatic apical periodontitis and endodontic treatment response. J Inflamm (Lond) 9:8. https://doi.org/10.1186/1476-9255-9-8

    Article  Google Scholar 

  16. Derlindati E, Dei Cas A, Montanini B, Spigoni V, Curella V, Aldigeri R, Ardigo D, Zavaroni I, Bonadonna RC (2015) Transcriptomic analysis of human polarized macrophages: more than one role of alternative activation? PLoS One 10:e0119751. https://doi.org/10.1371/journal.pone.0119751

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hernandez M, Dutzan N, Garcia-Sesnich J, Abusleme L, Dezerega A, Silva N, Gonzalez FE, Vernal R, Sorsa T, Gamonal J (2011) Host-pathogen interactions in progressive chronic periodontitis. J Dent Res 90:1164–1170. https://doi.org/10.1177/0022034511401405

    Article  PubMed  Google Scholar 

  18. Zhuang Z, Yoshizawa-Smith S, Glowacki A, Maltos K, Pacheco C, Shehabeldin M, Mulkeen M, Myers N, Chong R, Verdelis K, Garlet GP, Little S, Sfeir C (2019) Induction of M2 macrophages prevents bone loss in murine periodontitis models. J Dent Res 22034518805984. https://doi.org/10.1177/0022034518805984

  19. Ortiz MC, Lefimil C, Rodas PI, Vernal R, Lopez M, Acuna-Castillo C, Imarai M, Escobar A (2015) Neisseria gonorrhoeae modulates immunity by polarizing human macrophages to a M2 profile. PLoS One 10:e0130713. https://doi.org/10.1371/journal.pone.0130713

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yu T, Zhao L, Huang X, Ma C, Wang Y, Zhang J, Xuan D (2016) Enhanced activity of the macrophage M1/M2 phenotypes and phenotypic switch to M1 in periodontal infection. J Periodontol 87:1092–1102. https://doi.org/10.1902/jop.2016.160081

    Article  PubMed  Google Scholar 

  21. Azuma M (2006) Fundamental mechanisms of host immune responses to infection. J Periodontal Res 41:361–373. https://doi.org/10.1111/j.1600-0765.2006.00896.x

    Article  PubMed  Google Scholar 

  22. Gazivoda D, Dzopalic T, Bozic B, Tatomirovic Z, Brkic Z, Colic M (2009) Production of proinflammatory and immunoregulatory cytokines by inflammatory cells from periapical lesions in culture. J Oral Pathol Med 38:605–611. https://doi.org/10.1111/j.1600-0714.2009.00788.x

    Article  PubMed  Google Scholar 

  23. Rocas IN, Siqueira JF Jr, Debelian GJ (2011) Analysis of symptomatic and asymptomatic primary root canal infections in adult Norwegian patients. J Endod 37:1206–1212. https://doi.org/10.1016/j.joen.2011.05.026

    Article  PubMed  Google Scholar 

  24. Marinho AC, Martinho FC, Leite FR, Nascimento GG, Gomes BP (2015) Proinflammatory activity of primarily infected endodontic content against macrophages after different phases of the root canal therapy. J Endod 41:817–823. https://doi.org/10.1016/j.joen.2015.01.017

    Article  PubMed  Google Scholar 

  25. Martinho FC, Leite FR, Chiesa WM, Nascimento GG, Feres M, Gomes BP (2014) Signaling pathways activation by primary endodontic infectious contents and production of inflammatory mediators. J Endod 40:484–489. https://doi.org/10.1016/j.joen.2013.10.022

    Article  PubMed  Google Scholar 

  26. Barros MH, Hauck F, Dreyer JH, Kempkes B, Niedobitek G (2013) Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS One 8:e80908. https://doi.org/10.1371/journal.pone.0080908

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ambarus CA, Krausz S, van Eijk M, Hamann J, Radstake TR, Reedquist KA, Tak PP, Baeten DL (2012) Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. J Immunol Methods 375:196–206. https://doi.org/10.1016/j.jim.2011.10.013

    Article  PubMed  Google Scholar 

  28. Epelman S, Lavine KJ, Randolph GJ (2014) Origin and functions of tissue macrophages. Immunity 41:21–35. https://doi.org/10.1016/j.immuni.2014.06.013

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ravetch JV, Kinet JP (1991) Fc receptors. Annu Rev Immunol 9:457–492. https://doi.org/10.1146/annurev.iy.09.040191.002325

    Article  PubMed  Google Scholar 

  30. Hristodorov D, Mladenov R, Huhn M, Barth S, Thepen T (2012) Macrophage-targeted therapy: CD64-based immunotoxins for treatment of chronic inflammatory diseases. Toxins (Basel) 4:676–694. https://doi.org/10.3390/toxins4090676

    Article  Google Scholar 

  31. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233:6425–6440. https://doi.org/10.1002/jcp.26429

    Article  PubMed  Google Scholar 

  32. Weber M, Schlittenbauer T, Moebius P, Buttner-Herold M, Ries J, Preidl R, Geppert CI, Neukam FW, Wehrhan F (2017) Macrophage polarization differs between apical granulomas, radicular cysts, and dentigerous cysts. Clin Oral Investig 22:385–394. https://doi.org/10.1007/s00784-017-2123-1

    Article  PubMed  Google Scholar 

  33. Zhou LN, Bi CS, Gao LN, An Y, Chen F, Chen FM (2018) Macrophage polarization in human gingival tissue in response to periodontal disease. Oral Dis 25:265–273. https://doi.org/10.1111/odi.12983

    Article  PubMed  Google Scholar 

  34. Wang J, Jiang Y, Chen W, Zhu C, Liang J (2012) Bacterial flora and extraradicular biofilm associated with the apical segment of teeth with post-treatment apical periodontitis. J Endod 38(7):954–959. https://doi.org/10.1016/j.joen.2012.03.004

    Article  PubMed  Google Scholar 

  35. Mills CD (2015) Anatomy of a discovery: m1 and m2 macrophages. Front Immunol 6:212. https://doi.org/10.3389/fimmu.2015.00212

    Article  PubMed  PubMed Central  Google Scholar 

  36. Etzerodt A, Moestrup SK (2013) CD163 and inflammation: biological, diagnostic, and therapeutic aspects. Antioxid Redox Signal 18:2352–2363. https://doi.org/10.1089/ars.2012.4834

    Article  PubMed  PubMed Central  Google Scholar 

  37. Buechler C, Ritter M, Orso E, Langmann T, Klucken J, Schmitz G (2000) Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J Leukoc Biol 67:97–103. https://doi.org/10.1002/jlb.67.1.97

    Article  PubMed  Google Scholar 

  38. Alvarado-Vazquez PA, Bernal L, Paige CA, Grosick RL, Moracho Vilrriales C, Ferreira DW, Ulecia-Moron C, Romero-Sandoval EA (2017) Macrophage-specific nanotechnology-driven CD163 overexpression in human macrophages results in an M2 phenotype under inflammatory conditions. Immunobiology 222:900–912. https://doi.org/10.1016/j.imbio.2017.05.011

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ma N, Yang D, Okamura H, Teramachi J, Hasegawa T, Qiu L, Haneji T (2017) Involvement of interleukin23 induced by Porphyromonas endodontalis lipopolysaccharide in osteoclastogenesis. Mol Med Rep 15:559–566. https://doi.org/10.3892/mmr.2016.6041

    Article  PubMed  Google Scholar 

  40. Duvallet E, Semerano L, Assier E, Falgarone G, Boissier MC (2011) Interleukin-23: a key cytokine in inflammatory diseases. Ann Med 43:503–511. https://doi.org/10.3109/07853890.2011.577093

    Article  PubMed  Google Scholar 

  41. Hernandez-Caldera A, Vernal R, Paredes R, Veloso-Matta P, Astorga J, Hernandez M (2017) Human periodontal ligament fibroblasts synthesize C-reactive protein and Th-related cytokines in response to interleukin (IL)-6 trans-signalling. Int Endod J 51:632–640. https://doi.org/10.1111/iej.12872

    Article  PubMed  Google Scholar 

  42. Pasqualini D, Bergandi L, Palumbo L, Borraccino A, Dambra V, Alovisi M, Migliaretti G, Ferraro G, Ghigo D, Bergerone S, Scotti N, Aimetti M, Berutti E (2012) Association among oral health, apical periodontitis, CD14 polymorphisms, and coronary heart disease in middle-aged adults. J Endod 38:1570–1577. https://doi.org/10.1016/j.joen.2012.08.013

    Article  PubMed  Google Scholar 

  43. Liljestrand JM, Mantyla P, Paju S, Buhlin K, Kopra KA, Persson GR, Hernandez M, Nieminen MS, Sinisalo J, Tjaderhane L, Pussinen PJ (2016) Association of endodontic lesions with coronary artery disease. J Dent Res 95:1358–1365. https://doi.org/10.1177/0022034516660509

    Article  PubMed  Google Scholar 

  44. Petersen J, Glassl EM, Nasseri P, Crismani A, Luger AK, Schoenherr E, Bertl K, Glodny B (2014) The association of chronic apical periodontitis and endodontic therapy with atherosclerosis. Clin Oral Investig 18:1813–1823. https://doi.org/10.1007/s00784-013-1156-3

    Article  PubMed  Google Scholar 

  45. Nociti FH Jr, Casati MZ, Duarte PM (2015) Current perspective of the impact of smoking on the progression and treatment of periodontitis. Periodontol 2000 67:187–210. https://doi.org/10.1111/prd.12063

    Article  PubMed  Google Scholar 

  46. Bergstrom J, Babcan J, Eliasson S (2004) Tobacco smoking and dental periapical condition. Eur J Oral Sci 112:115–120. https://doi.org/10.1111/j.1600-0722.2004.00112.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Pablo Veloso thanks the fellowship CONICYT 21171640, from the Chilean Government and B. Pesce (PhD.) by supporting flow cytometric procedures at the MED.UCHILE-FACS Laboratory from Biomedical Sciences Institute, School of Medicine of University of Chile, Santiago de Chile.

Funding

The work was supported by FONDECYT grant number 1160741.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Hernández.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veloso, P., Fernández, A., Terraza-Aguirre, C. et al. Macrophages skew towards M1 profile through reduced CD163 expression in symptomatic apical periodontitis. Clin Oral Invest 24, 4571–4581 (2020). https://doi.org/10.1007/s00784-020-03324-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03324-2

Keywords

Navigation