Skip to main content

Advertisement

Log in

Impact of fabrication procedures on residual monomer elution of conventional polymethyl methacrylate (PMMA)—a measurement approach by UV/Vis spectrophotometry

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

To analyse the residual monomer (MMA) elution of polymethyl methacrylate (PMMA) in distilled water after diverse fabrication methods and aging procedures.

Materials and methods

PMMA specimens (N = 192, PalaXpress; Kulzer, Hanau, Germany) were manufactured (pouring, n = 96/injection, n = 96) and polymerized in water (55°C) without pressure (n = 48) and with 2 bar pressure (n = 48). Specimens were grinded (n = 24) or polished (n = 24) and aged for 12 h in distilled water/37°C (n = 12) or at air/20°C (n = 12) and stored afterwards in distilled water at 37°C. MMA elution was evaluated after 1, 2, 3, 4, 5, 6, 7, 10, 15 days (UV/Vis spectrophotometry). Data were analysed with Kolmogorov-Smirnov, Mann-Whitney-U and Cohen-d test using SPSS (α < 0.5).

Results

The pouring procedure resulted in significantly higher MMA elution than the injection procedure up to 5 days. Polymerization with a pressure of 2 bar reduced the MMA elution significantly for poured specimens. Polishing reduced the MMA elution in comparison to grinding.

Conclusions

The fabrication procedure (pouring/injection) showed the strongest correlation to the MMA elution (r = 0.500), followed by polishing (r = 0.243), the pressure during polymerization (r = 0.109) and the storage medium (r = 0.053).

Clinical relevance

Higher MMA elution may increase the risk of chemical irritations, allergic reactions and hypersensitivities of the oral mucosa. Technicians and dentists should be aware about the elution differences dependent on the fabrication procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ica RB, Ozturk F, Ates B, Malkoc MA, Kelestemur U (2014) Level of residual monomer released from orthodontic acrylic materials. Angle Orthod 84(5):862–867. https://doi.org/10.2319/060713-435.1

    Article  PubMed  Google Scholar 

  2. Bayraktar G, Guvener B, Bural C, Uresin Y (2006) Influence of polymerization method, curing process, and length of time of storage in water on the residual methyl methacrylate content in dental acrylic resins. J Biomed Mater Res B Appl Biomater 76(2):340–345. https://doi.org/10.1002/jbm.b.30377

    Article  PubMed  Google Scholar 

  3. Ayman AD (2017) The residual monomer content and mechanical properties of CAD\CAM resins used in the fabrication of complete dentures as compared to heat cured resins. Electron Physician 9(7):4766–4772. https://doi.org/10.19082/4766

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gautam R, Singh RD, Sharma VP, Siddhartha R, Chand P, Kumar R (2012) Biocompatibility of polymethylmethacrylate resins used in dentistry. J Biomed Mater Res B Appl Biomater 100(5):1444–1450. https://doi.org/10.1002/jbm.b.32673

    Article  PubMed  Google Scholar 

  5. Urban VM, Machado AL, Oliveira RV, Vergani CE, Pavarina AC, Cass QB (2007) Residual monomer of reline acrylic resins: effect of water-bath and microwave post-polymerization treatments. Dent Mater 23(3):363–368. https://doi.org/10.1016/j.dental.2006.01.021

    Article  PubMed  Google Scholar 

  6. Urban VM, Machado AL, Vergani CE, Giampaolo ET, Pavarina AC, de Almeida FG, Cass QB (2009) Effect of water-bath post-polymerization on the mechanical properties, degree of conversion, and leaching of residual compounds of hard chairside reline resins. Dent Mater 25(5):662–671. https://doi.org/10.1016/j.dental.2008.10.017

    Article  PubMed  Google Scholar 

  7. Bettencourt AF, Neves CB, de Almeida MS, Pinheiro LM, Oliveira SA, Lopes LP, Castro MF (2010) Biodegradation of acrylic based resins: a review. Dent Mater 26(5):e171–e180. https://doi.org/10.1016/j.dental.2010.01.006

    Article  PubMed  Google Scholar 

  8. Goodacre CJ, Garbacea A, Naylor WP, Daher T, Marchack CB, Lowry J (2012) CAD/CAM fabricated complete dentures: concepts and clinical methods of obtaining required morphological data. J Prosthet Dent 107(1):34–46. https://doi.org/10.1016/S0022-3913(12)60015-8

    Article  PubMed  Google Scholar 

  9. Ayaz EA, Durkan R, Koroglu A, Bagis B (2014) Comparative effect of different polymerization techniques on residual monomer and hardness properties of PMMA-based denture resins. J Appl Biomater Funct Mater 12(3):228–233. https://doi.org/10.5301/jabfm.5000199

    Article  PubMed  Google Scholar 

  10. Vallittu PK, Miettinen V, Alakuijala P (1995) Residual monomer content and its release into water from denture base materials. Dent Mater 11(5):338–342. https://doi.org/10.1016/0109-5641(95)80031-X

    Article  PubMed  Google Scholar 

  11. Shim JS, Watts DC (1999) Residual monomer concentrations in denture-base acrylic resin after an additional, soft-liner, heat-cure cycle. Dent Mater 15(4):296–300. https://doi.org/10.1016/S0109-5641(99)00048-2

    Article  PubMed  Google Scholar 

  12. Zissis A, Yannikakis S, Polyzois G, Harrison A (2008) A long term study on residual monomer release from denture materials. Eur J Prosthodont Restor Dent 16(2):81–84

    PubMed  Google Scholar 

  13. Nik TH, Shahroudi AS, Eraghihzadeh Z, Aghajani F (2014) Comparison of residual monomer loss from cold-cure orthodontic acrylic resins processed by different polymerization techniques. J Orthod 41(1):30–37. https://doi.org/10.1179/1465313313y.0000000078

    Article  PubMed  Google Scholar 

  14. Steinmassl PA, Wiedemair V, Huck C, Klaunzer F, Steinmassl O, Grunert I, Dumfahrt H (2017) Do CAD/CAM dentures really release less monomer than conventional dentures? Clin Oral Investig 21(5):1697–1705. https://doi.org/10.1007/s00784-016-1961-6

    Article  PubMed  Google Scholar 

  15. DIN EN ISO 20795-1:2013-06: Dentistry - base polymers - Part 1: denture base polymers (ISO 20795-1:2013); German version EN ISO 20795-1:2013. doi:

  16. Urban VM, Cass QB, Oliveira RV, Giampaolo ET, Machado AL (2006) Development and application of methods for determination of residual monomer in dental acrylic resins using high performance liquid chromatography. Biomed Chromatogr 20(4):369–376. https://doi.org/10.1002/bmc.575

    Article  PubMed  Google Scholar 

  17. Denis AB, Diagone CA, Plepis AM, Viana RB (2015) The effect of the polymerization initiator and light source on the elution of residual Bis-GMA and TEGDMA monomers: a study using liquid chromatography with UV detection. Spectrochim Acta A Mol Biomol Spectrosc 151:908–915. https://doi.org/10.1016/j.saa.2015.07.040

    Article  PubMed  Google Scholar 

  18. Tuna EB, Rohlig BG, Sancakli E, Evlioglu G, Gencay K (2013) Influence of acrylic resin polymerization methods on residual monomer release. J Contemp Dent Pract 14(2):259–264

    Article  Google Scholar 

  19. Lamb DJ, Ellis B, Priestley D (1982) Loss into water of residual monomer from autopolymerizing dental acrylic resin. Biomaterials 3(3):155–159

    Article  Google Scholar 

  20. Stafford GD, Brooks SC (1985) The loss of residual monomer from acrylic orthodontic resins. Dent Mater 1(4):135–138

    Article  Google Scholar 

  21. Jorge JH, Giampaolo ET, Machado AL, Vergani CE (2003) Cytotoxicity of denture base acrylic resins: a literature review. J Prosthet Dent 90(2):190–193. https://doi.org/10.1016/S0022391303003494

    Article  PubMed  Google Scholar 

  22. Vallittu PK, Ruyter IE, Buykuilmaz S (1998) Effect of polymerization temperature and time on the residual monomer content of denture base polymers. Eur J Oral Sci 106(1):588–593

    Article  Google Scholar 

  23. Lamb DJ, Ellis B, Priestley D (1983) The effects of process variables on levels of residual monomer in autopolymerizing dental acrylic resin. J Dent 11(1):80–88

    Article  Google Scholar 

  24. Kedjarune U, Charoenworaluk N, Koontongkaew S (1999) Release of methyl methacrylate from heat-cured and autopolymerized resins: cytotoxicity testing related to residual monomer. Aust Dent J 44(1):25–30

    Article  Google Scholar 

  25. Gauthier MA, Stangel I, Ellis TH, Zhu XX (2005) Oxygen inhibition in dental resins. J Dent Res 84(8):725–729. https://doi.org/10.1177/154405910508400808

    Article  PubMed  Google Scholar 

  26. Baker S, Brooks SC, Walker DM (1988) The release of residual monomeric methyl methacrylate from acrylic appliances in the human mouth: an assay for monomer in saliva. J Dent Res 67(10):1295–1299. https://doi.org/10.1177/00220345880670101001

    Article  PubMed  Google Scholar 

  27. Blanchet LJ, Bowman DC, McReynolds HD (1982) Effects of methyl methacrylate monomer vapors on respiration and circulation in unanesthetized rats. J Prosthet Dent 48(3):344–348

    Article  Google Scholar 

  28. Oysaed H, Ruyter IE, Sjovik Kleven IJ (1988) Release of formaldehyde from dental composites. J Dent Res 67(10):1289–1294. https://doi.org/10.1177/00220345880670100901

    Article  PubMed  Google Scholar 

  29. Vallittu PK (1996) The effect of surface treatment of denture acrylic resin on the residual monomer content and its release into water. Acta Odontol Scand 54(3):188–192

    Article  Google Scholar 

  30. Goiato, M.C., E. Freitas, D. dos Santos, R. de Medeiros, and M. Sonego (2015) Acrylic Resin Cytotoxicity for Denture Base--Literature Review. Adv Clin Exp Med 24(4):679-686. doi: 10.17219/acem/33009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Keul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keul, C., Seidl, J., Güth, JF. et al. Impact of fabrication procedures on residual monomer elution of conventional polymethyl methacrylate (PMMA)—a measurement approach by UV/Vis spectrophotometry. Clin Oral Invest 24, 4519–4530 (2020). https://doi.org/10.1007/s00784-020-03317-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03317-1

Keywords

Navigation