Skip to main content
Log in

Proteomic and scanning electron microscopic analysis of submandibular sialoliths

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Several theories have been proposed regarding the genesis of sialoliths, including the organic core theory, which suggests epithelial or bacterial etiology originating in the central core. Our aim was to use novel methodologies to analyze central areas (the core) of calculi from sialolithiasis patients.

Materials and methods

The structures of the halves of six submandibular salivary stones were analyzed by scanning electron microscopy (SEM). After structural analysis, from the other six halves, samples from the central parts of the core and peripheral parts of the core were digested with trypsin and analyzed by matrix-assisted laser desorption ionization–time of flight mass spectrometry. The peptide mass fingerprints were compared with the results of in silico digestion.

Results

SEM analysis of the sialoliths showed that organic structures (collagen/fibrous-like structures, bacterial fragments) were visible only outside of the core in the concentric layers of external areas, but not in the core area. The mass spectrometry (MS)/MS post-source decay experiments were completed from the four, most intense signals observed in the MS spectrum and human defensin was proven to be present in three of the examined samples, originated from the peripheral region of three cores.

Conclusions

Although proteomic analysis demonstrated defensin protein in the peripheral region of the core in three sialoliths, SEM failed to prove organic structures in the core.

Clinical relevance

New investigation modalities still cannot prove organic structures in the core, henceforward challenging the organic core theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grases F, Santiago C, Simonet BM, Costa-Bauza A (2003) Sialolithiasis: mechanism of calculi formation and etiologic factors. Clin Chim Acta 334:131–136

    Article  PubMed  Google Scholar 

  2. Sherman JA, McGurk M (2000) Lack of correlation between water hardness and salivary calculi in England. Br J Oral Maxillofac Surg 38(1):50–53

    Article  PubMed  Google Scholar 

  3. Schow SR, Miloro M (1998) In: Peterson LJ (ed.) Oral and Maxillofacial Surgery. 3rd ed. Mosby, St. Louis, 486–509.

  4. Lipa B, Beer-Sheva (2002) Giant salivary gland calculi: diagnostic imaging and surgical management. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 94:320–323

    Article  Google Scholar 

  5. Baurmash HD (2007) Obstructive parotid ductal disease: intraoral management. J Oral Maxillofac Surg 65:1886–1891

    Article  PubMed  Google Scholar 

  6. Baurmash HD (2004) Submandibular salivary stones: current management modalitis. J Oral Maxillofac Surg 62:369–378

    Article  PubMed  Google Scholar 

  7. Szalma J, Olasz L, Tóth M, Acs P, Szabó G (2007) Diagnostic value of radiographic and ultrasonic examinations in patients with sialoadenitis and sialolithiasis. Fogorv Szle 100:53–58

    Google Scholar 

  8. Kasaboglu O, Er N, Tümer C, Akkocaoglu M (2004) Micromorphology of sialoliths in submandibular salivary gland: a scanning electron microscope and X-ray diffraction analysis. J Oral Maxillofac Surg 62:1253–1258

    Article  PubMed  Google Scholar 

  9. Zenk J, Benzel W, Iro H (1994) New modalities in the management of human sialolithiasis. Minim Invasive Ther 3:275–284

    Article  Google Scholar 

  10. Boskey AL, Boyan-Salyers BD, Burstein LS, Mandel ID (1981) Lipids associated with mineralization of human submandibular gland sialoliths. Arch Oral Biol 26:779–785

    Article  PubMed  Google Scholar 

  11. Mimura M, Tanaka N, Ichinose S, Kimijima Y, Amagasa T (2005) Possible etiology of calculi formation in salivary glands: biophysical analysis of calculus. Med Mol Morphol 38:189–195

    Article  PubMed  Google Scholar 

  12. Hiraide F, Nomura Y (1980) The fine surface structure and composition of salivary calculi. Laryngoscope 90:152–158

    Article  PubMed  Google Scholar 

  13. Tanaka N, Ichinose S, Adachi Y, Mimura M, Kimijima Y (2003) Ultrastructural analysis of salivary calculus in combination with X-ray microanalysis. Med Electron Microsc 36:120–126

    PubMed  Google Scholar 

  14. Burnstein LS, Boskey AL, Tannenbaum PJ, Posner AS, Mandel ID (1979) The crystal chemistry of submandibular and parotid salivary gland stones. J Oral Pathol 8:284–291

    Article  PubMed  Google Scholar 

  15. Williams MF (1999) Sialolithiasis. Otolaryngol Clin N Am 32:819–834

    Article  Google Scholar 

  16. Anneroth G, Eneroth CM, Isacsson G (1975) Morphology of salivary calculi. The distribution of the inorganic component. J Oral Pathol 4:257–265

    Article  PubMed  Google Scholar 

  17. Teymoortash A, Wollstein AC, Lippert BM, Peldszus R, Werner JA (2002) Bacteria and pathogenesis of human salivary calculus. Acta Otolaryngol 122:210–214

    Article  PubMed  Google Scholar 

  18. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    Article  PubMed  Google Scholar 

  19. Yao J, Scott JR, Young MK, Wilkins CL (1998) Importance of matrix: analyte ratio for buffer tolerance using 2,5-dihydroxybenzoic acid as a matrix in matrix-assisted laser desorption/ionization-fourier transform mass spectrometry and matrix-assisted laser desorption/ionization-time of flight. J Am Soc Mass Spectrom 9:805–813

    Article  PubMed  Google Scholar 

  20. Chait BT (2006) Chemistry. Mass spectrometry: bottom-up or top-down? Science 314:65–66

    Article  PubMed  Google Scholar 

  21. Cramer R, Gobom J, Nordhoff E (2005) High-throughput proteomics using matrix-assisted laser desorption/ionization mass spectrometry. Expert Rev Proteomics 2:407–420

    Article  PubMed  Google Scholar 

  22. Thiede B, Höhenwarter W, Kraha A, Mattow J, Schmid M, Schmidt F, Jungblut PR (2005) Peptide mass fingerprinting. Methods 35:237–247

    Article  PubMed  Google Scholar 

  23. Bogdanov B, Smith RD (2005) Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev 24:168–200

    Article  PubMed  Google Scholar 

  24. Zhang G, Annan RS, Carr SA, Neubert TA (2010) Overview of peptide and protein analysis by mass spectrometry. Curr Protoc Protein Sci 16:16.1

    Google Scholar 

  25. Henzel WJ, Stults JT (2001) Matrix-assisted laser desorption/ionization time-of-flight mass analysis of peptides. Curr Protoc Protein Sci 16:16.2

    Google Scholar 

  26. Lee LT, Wong YK (2010) Pathogenesis and diverse histologic findings of sialolithiasis in minor salivary glands. J Oral Maxillofac Surg 68:465–470

    Article  PubMed  Google Scholar 

  27. Isacsson G, Persson NE (1982) The gigantiform salivary calculus. Int J Oral Surg 11:135–139

    Article  PubMed  Google Scholar 

  28. Epivatianos A, Antoniadis D, Iliadis T, Papanayotou P (1989) Histochemical study on the mucosubstances of the calculi of the main excretory duct of the human submandibular gland. Hell Period Stomat Gnathopathoprosopike Cheir 4:15–20

    PubMed  Google Scholar 

  29. Giray CB, Dogan M, Akalin A, Baltrusaitis J, Chan DC, Skinner HC, Dogan AU (2007) Sialolith characterization by scanning electron microscopy and X-ray photoelectron spectroscopy. Scanning 29:206–210

    Article  PubMed  Google Scholar 

  30. Harrison JD, Epivatianos A, Bhatia SN (1997) Role of microliths in the aetiology of chronic submandibular sialadenitis: a clinicopathological investigation of 154 cases. Histopathology 31:237–251

    Article  PubMed  Google Scholar 

  31. Teymoortash A, Buck P, Jepsen H, Werner JA (2003) Sialolith crystals localized intraglandularly and in the Wharton's duct of the human submandibular gland: an X-ray diffraction analysis. Arch Oral Biol 48:233–236

    Article  PubMed  Google Scholar 

  32. Triantafyllou A, Fletcher D, Scott J (2006) Histological and histochemical observations on salivary microliths in ferret. Arch Oral Biol 51:198–205

    Article  PubMed  Google Scholar 

  33. Jayasree RS, Gupta AK, Vivek V, Nayar VU (2008) Spectroscopic and thermal analysis of a submandibular sialolith of Wharton's duct resected using Nd:YAG laser. Lasers Med Sci 23:125–131

    Article  PubMed  Google Scholar 

  34. Sabot JF, Gustin MP, Delahougue K, Faure F, Machon C, Hartmann DJ (2012) Analytical investigation of salivary calculi, by mid-infrared spectroscopy. Analyst 137:2095–2300, Epub 2012 Mar 14

    Article  PubMed  Google Scholar 

  35. Boskey AL, Burstein LS, Mandel ID (1983) Phospholipids associated with human parotid gland sialoliths. Arch Oral Biol 28:655–657

    Article  PubMed  Google Scholar 

  36. Slomiany BL, Murty VL, Aono M, Slomiany A, Mandel ID (1983) Lipid composition of human parotid salivary gland stones. J Dent Res 62:866–869

    Article  PubMed  Google Scholar 

  37. Ord RA, Pazoki AE (2004) Salivary gland disease and tumors. In: Miloro M (ed) Peterson’s principles of oral and maxillofacial surgery, 2nd edn. BC Decker Inc., Hamilton, p 676

    Google Scholar 

  38. Koch M, Iro H, Zenk J (2010) Stenosis and other non-sialolithiasis-related obstructions of the major salivary gland ducts. Modern treatment concepts. HNO 58:218–224

    Article  PubMed  Google Scholar 

  39. Schröder JM, Harder J (1999) Human beta-defensin-2. Int J Biochem Cell Biol 31:645–651

    Article  PubMed  Google Scholar 

  40. White SH, Wimley WC, Selsted ME (1995) Structure, function, and membrane integration of defensins. Curr Opin Struct Biol 5:521–527

    Article  PubMed  Google Scholar 

  41. Droin N, Hendra JB, Ducoroy P, Solary E (2009) Human defensins as cancer biomarkers and antitumour molecules. J Proteomics 72:918–927

    Article  PubMed  Google Scholar 

  42. Davison G, Allgrove J, Gleeson M (2009) Salivary antimicrobial peptides (LL-37 and alpha-defensins HNP1-3), antimicrobial and IgA responses to prolonged exercise. Eur J Appl Physiol 106:277–284

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor László Seress for SEM analysis and Béla Dolgos for the SEM technical assistance. The authors thank the Hungarian Scientific Research Fund (OTKA) PD 76395, PD 78599, and K 81839 for supporting this research.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Szalma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szalma, J., Böddi, K., Lempel, E. et al. Proteomic and scanning electron microscopic analysis of submandibular sialoliths. Clin Oral Invest 17, 1709–1717 (2013). https://doi.org/10.1007/s00784-012-0870-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-012-0870-6

Keywords

Navigation