Skip to main content
Log in

Mean field portfolio games

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We study mean field portfolio games with random parameters, where each player is concerned with not only her own wealth, but also relative performance to her competitors. We use the martingale optimality principle approach to characterise the unique Nash equilibrium in terms of a mean field FBSDE with quadratic growth, which is solvable under a weak interaction assumption. Motivated by the latter, we establish an asymptotic expansion result in powers of the competition parameter. When the market parameters do not depend on the Brownian paths, we obtain the Nash equilibrium in closed form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Briand, P., Confortola, F.: BSDEs with stochastic Lipschitz condition and quadratic PDEs in Hilbert spaces. Stoch. Process. Appl. 118, 818–838 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Briand, P., Hu, Y.: Quadratic BSDEs with convex generators and unbounded terminal conditions. Probab. Theory Relat. Fields 141, 543–567 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carmona, R., Delarue, F.: Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51, 2705–2734 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chan, P., Sircar, R.: Bertrand and Cournot mean field games. Appl. Math. Optim. 71, 533–569 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, P., Sircar, R.: Fracking, renewables, and mean field games. SIAM Rev. 59, 588–615 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. dos Reis, G., Platonov, V.: Forward utilities and mean-field games under relative performance concerns. In: Bernardin, C., et al. (eds.) From Particle Systems to Partial Differential Equations, ICPS 2019 2018 2017. Springer Proceedings in Mathematics & Statistics, vol. 352, pp. 227–251. Springer, Berlin (2019)

    Chapter  Google Scholar 

  7. dos Reis, G., Platonov, V.: Forward utility and market adjustments in relative investment–consumption games of many players. SIAM J. Financ. Math. 13, 844–876 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Espinosa, G., Touzi, N.: Optimal investment under relative performance concerns. Math. Finance 25, 221–257 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frei, C., dos Reis, G.: A financial market with interacting investors: does an equilibrium exist? Math. Financ. Econ. 4, 161–182 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fu, G., Graewe, P., Horst, U., Popier, A.: A mean field game of optimal portfolio liquidation. Math. Oper. Res. 46, 1250–1281 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fu, G., Horst, U.: Mean field leader–follower games with terminal state constraint. SIAM J. Control Optim. 58, 2078–2113 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fu, G., Su, X., Zhou, C.: Mean field exponential utility games: a probabilistic approach (2020). Preprint, available online at https://arxiv.org/abs/2006.07684

  13. Herdegen, M., Muhle-Karbe, J., Possamaï, D.: Equilibrium asset pricing with transaction costs. Finance Stoch. 25, 231–275 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hibon, H., Hu, Y., Tang, S.: Mean-field type quadratic BSDEs (2017). Preprint, available online at https://arxiv.org/abs/1708.08784

  15. Horst, U.: Stationary equilibria in discounted stochastic games with weakly interacting players. Games Econ. Behav. 52, 83–108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Horst, U., Xia, X., Zhou, C.: Portfolio liquidation under factor uncertainty. Ann. Appl. Probab. 32, 80–123 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, R., Zariphopoulou, T.: N-player and mean-field games in Itô-diffusion markets with competitive or homophilous interaction. In: Yin, G., Zariphopoulou, T. (eds.) Stochastic Analysis, Filtering, and Stochastic Optimization, pp. 209–237. Springer, Berlin (2022)

    Chapter  MATH  Google Scholar 

  18. Hu, Y., Imkeller, P., Müller, M.: Utility maximization in incomplete markets. Ann. Appl. Probab. 15, 1691–1712 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, M., Malhamé, R., Caines, P.: Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6, 221–252 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kazamaki, N.: Continuous Exponential Martingales and BMO. Lecture Notes in Mathematics, vol. 1579. Springer, Berlin (2006)

    MATH  Google Scholar 

  21. Lacker, D., Soret, A.: Many-player games of optimal consumption and investment under relative performance criteria. Math. Financ. Econ. 14, 263–281 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lacker, D., Zariphopoulou, T.: Mean field and \(n\)-agent games for optimal investment under relative performance criteria. Math. Finance 29, 1003–1038 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Matoussi, A., Possamaï, D., Zhou, C.: Robust utility maximization in non-dominated models with 2BSDEs. Math. Finance 25, 258–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Meyer, P.A.: Probability and Potentials. Blaisdell, Boston (1966)

    MATH  Google Scholar 

  26. Rouge, R., El Karoui, N.: Pricing via utility maximization and entropy. Math. Finance 10, 259–276 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tevzadze, R.: Solvability of backward stochastic differential equations with quadratic growth. Stoch. Process. Appl. 118, 503–515 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the Co-Editor, an anonymous Associate Editor and the anonymous referees for many valuable comments and suggestions, which have significantly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanxing Fu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

G. Fu’s research is supported by the Start-up Fund P0035348 and Research Center for Quantitative Finance P0042708 from The Hong Kong Polytechnic University, NSFC Grant No. 12101523, as well as Hong Kong ECS Grant No. 25215122. C. Zhou’s research is supported by NSFC Grant No. 11871364 and Singapore MOE (Ministry of Educations) AcRF Grants A-8000453-00-00, R-146-000-271-112, R-146-000-284-114.

Appendices

Appendix A: \(\theta \)-dependent terms in the BSDE (3.12)

In this section, we summarise the cumbersome \(\theta \)-dependent terms in the BSDE (3.12). To facilitate the presentation, we introduce the notation

$$\begin{aligned} f^{\sigma}&= \frac{\sigma h}{(1-\gamma )(\sigma ^{2}+(\sigma ^{0})^{2} )},\qquad f^{ \sigma ^{0}}= \frac{\sigma ^{0} h}{(1-\gamma )(\sigma ^{2}+(\sigma ^{0})^{2} )}, \\ f^{h}&=\frac{ h^{2}}{(1-\gamma )(\sigma ^{2}+(\sigma ^{0})^{2} )}, \qquad \psi = \frac{ \sigma \sigma ^{0}}{ (1-\gamma )( \sigma ^{2}+(\sigma ^{0})^{2} ) }, \\ \psi ^{\sigma}&= \frac{\sigma ^{2}}{ (1-\gamma )( \sigma ^{2}+(\sigma ^{0})^{2} ) }, \qquad \psi ^{\sigma ^{0}}= \frac{(\sigma ^{0})^{2}}{ (1-\gamma )( \sigma ^{2}+(\sigma ^{0})^{2} ) }, \\ \phi ^{(1)}&= \frac{h\sigma ^{0}}{(1-\gamma )( \sigma ^{2}+(\sigma ^{0})^{2} )}+ \frac{\sigma \sigma ^{0}Z^{\bar{o}}}{(1-\gamma )( \sigma ^{2}+(\sigma ^{0})^{2} )} + \frac{(\sigma ^{0})^{2}Z^{0,\bar{o}}}{(1-\gamma )(\sigma ^{2}+(\sigma ^{0})^{2})}, \\ \phi ^{(2)}&= \frac{h\sigma}{(1-\gamma )( \sigma ^{2}+(\sigma ^{0})^{2} )}+ \frac{\sigma ^{2}Z^{\bar{o}}}{(1-\gamma )( \sigma ^{2}+(\sigma ^{0})^{2} )} + \frac{\sigma \sigma ^{0}Z^{0,\bar{o}}}{(1-\gamma )(\sigma ^{2}+(\sigma ^{0})^{2})}, \\ \phi ^{(3)}&=Z^{0,\bar{o}} + \frac{\gamma \sigma ^{0} (h+\sigma Z^{\bar{o}}+\sigma ^{0}Z^{0,\bar{o}} ) }{(1-\gamma )(\sigma ^{2}+(\sigma ^{0})^{2})}, \\ \phi ^{(4)}&= Z^{\bar{o}}+ \frac{\gamma \sigma ( h+\sigma Z^{\bar{o}}+\sigma ^{0}Z^{0,\bar{o}} ) }{(1-\gamma )(\sigma ^{2}+(\sigma ^{0})^{2})}, \\ \phi ^{\sigma}&=1+ \frac{\gamma \sigma ^{2}}{(1-\gamma )(\sigma ^{2}+(\sigma ^{0})^{2})}, \qquad \phi ^{\sigma ^{0}}=1+ \frac{\gamma (\sigma ^{0})^{2}}{(1-\gamma )(\sigma ^{2}+(\sigma ^{0})^{2})}, \\ g_{\cdot }&=-\mathbb{E}\bigg[ \frac{\theta \gamma (\sigma ^{0}_{\cdot})^{2} }{(1-\gamma )( \sigma ^{2}_{\cdot}+(\sigma ^{0}_{\cdot})^{2} ) } \bigg|\mathcal {F}^{0}_{\cdot }\bigg]. \end{aligned}$$

The terms that are dependent on \(\theta \) are

$$ \mathcal {J}_{2}(t;\widetilde{Z},\widetilde{Z}^{0},\theta )=\mathcal {I}_{1}(t; \widetilde{Z})+\mathcal {I}_{2}(t;\widetilde{Z}^{0})+\mathcal {I}_{3}(t; \widetilde{Z},\widetilde{Z}^{0})+\mathcal {I}_{4}(t), $$

where the terms involving \(\widetilde{Z}\) are given by

$$\begin{aligned} \mathcal {I}_{1}(t;\widetilde{Z}) &=\bigg( \frac{\phi ^{\sigma ^{0}}_{t}\theta ^{2}\gamma ^{2}}{2(1-g_{t})^{2}}+ \theta \gamma \mathbb{E}\bigg[ \frac{ \theta ^{2}\gamma ^{2} \psi ^{\sigma ^{0}}_{t} }{2(1-\gamma )(1-g_{t})^{2}} \bigg|\mathcal {F}^{0}_{t} \bigg]\bigg) \\ & \phantom{=:} \times ( \mathbb{E}[\psi _{t}\widetilde{Z}_{t}|\mathcal {F}^{0}_{t}] )^{2}+ \theta \gamma \mathbb{E}\bigg[ \frac{\psi ^{\sigma}_{t}}{2(1-\gamma )} ( \widetilde{Z}_{t})^{2} \bigg|\mathcal {F}^{0}_{t}\bigg] \\ & \phantom{=:} -\frac{\theta \gamma ^{2}\psi _{t}}{1-g_{t}}\widetilde{Z}_{t}\mathbb{E}[ \psi _{t}\widetilde{Z}_{t}|\mathcal {F}^{0}_{t}]-\theta \gamma \mathbb{E} \bigg[ \frac{\theta \gamma \psi _{t}}{(1-\gamma )(1-g_{t})} \widetilde{Z}_{t} \bigg|\mathcal {F}^{0}_{t} \bigg]\mathbb{E}[ \psi _{t} \widetilde{Z}_{t}|\mathcal {F}^{0}_{t} ] \\ & \phantom{=:} +\bigg( \frac{\theta \gamma}{1-g_{t}}\mathbb{E}[ \theta \gamma f^{ \sigma ^{0}}_{t}|\mathcal {F}^{0}_{t} ] -\frac{\theta \gamma}{1-g_{t}} \phi ^{(3)}_{t}\\ &\phantom{=:}\quad\ \ +\frac{\theta ^{2}\gamma ^{2}}{(1-g_{t})^{2}}\phi ^{ \sigma ^{0}}_{t}\mathbb{E}[ \phi ^{(1)}_{t}|\mathcal {F}^{0}_{t} ] \bigg) \mathbb{E}[ \psi _{t}\widetilde{Z}_{t}|\mathcal {F}^{0}_{t} ] \\ & \phantom{=:} +\theta \gamma \bigg( - \mathbb{E}\bigg[ \frac{\theta \gamma \phi _{t}^{(1)}}{(1-\gamma )(1-g_{t})}\bigg| \mathcal {F}^{0}_{t}\bigg] \\ & \phantom{=:} \qquad \quad + \mathbb{E}\bigg[ \frac{\theta ^{2}\gamma ^{2}\psi _{t}^{\sigma ^{0}}}{(1-\gamma )(1-g_{t})^{2}} \bigg|\mathcal {F}^{0}_{t}\bigg] \mathbb{E}[ \phi ^{(1)}_{t} |\mathcal {F}^{0}_{t} ] \bigg)\mathbb{E}[ \psi _{t}\widetilde{Z}_{t}|\mathcal {F}^{0}_{t} ] \\ & \phantom{=:} -\theta \gamma \mathbb{E}[ f^{\sigma}_{t}\widetilde{Z}_{t}|\mathcal {F}^{0}_{t} ]+\theta \gamma \mathbb{E}\bigg[ \frac{\phi _{t}^{(2)}}{1-\gamma} \widetilde{Z}_{t} \bigg|\mathcal {F}^{0}_{t} \bigg] \\ & \phantom{=:} -\theta \gamma \mathbb{E}[ \phi ^{(1)}_{t} |\mathcal {F}^{0}_{t}] \mathbb{E}\bigg[ \frac{ \theta \gamma \psi _{t}}{(1-\gamma )(1-g_{t})} \widetilde{Z}_{t} \bigg|\mathcal {F}^{0}_{t} \bigg]\\ & \phantom{=:}+\bigg(\phi _{t}^{(4)}- \frac{\theta \gamma ^{2}}{1-g_{t}}\psi _{t}\mathbb{E}[\phi ^{(1)}_{t}| \mathcal {F}^{0}_{t}] \bigg)\widetilde{Z}_{t}, \end{aligned}$$

the terms involving \(\widetilde{Z}^{0}\) are given by

$$\begin{aligned} \mathcal {I}_{2}(t;\widetilde{Z}^{0}) &=\bigg( \frac{\phi _{t}^{\sigma ^{0}}\theta ^{2}\gamma ^{2}}{2(1-g_{t})^{2}}+ \theta \gamma \mathbb{E}\bigg[ \frac{\theta ^{2} \gamma ^{2}\psi _{t}^{\sigma ^{0}}}{2(1-\gamma )(1-g_{t})^{2}} \bigg|\mathcal {F}^{0}_{t} \bigg] \bigg) ( \mathbb{E}[\psi _{t}^{\sigma ^{0}} \widetilde{Z}^{0}_{t}|\mathcal {F}^{0}_{t} ] )^{2} \\ & \phantom{=:} -\frac{\theta \gamma \phi ^{\sigma ^{0}}_{t}}{1-g_{t}}\widetilde{Z}^{0}_{t} \mathbb{E}[ \psi ^{\sigma ^{0}}_{t}\widetilde{Z}^{0}_{t}|\mathcal {F}^{0}_{t} ] +\theta \gamma \mathbb{E}\bigg[ \frac{ \psi ^{\sigma ^{0}}_{t}}{2(1-\gamma )} (\widetilde{Z}^{0}_{t})^{2} \bigg|\mathcal {F}^{0} \bigg] \\ & \phantom{=:} -\theta \gamma \mathbb{E}\bigg[ \frac{\theta \gamma \psi _{t}^{\sigma ^{0}}}{(1-\gamma )(1-g_{t})} \widetilde{Z}^{0}_{t} \bigg|\mathcal {F}^{0}_{t} \bigg]\mathbb{E}[\psi _{t}^{ \sigma ^{0}}\widetilde{Z}^{0}_{t}|\mathcal {F}^{0}_{t} ] \\ & \phantom{=:} + \frac{\theta \gamma}{1-g_{t}}\bigg(\mathbb{E}[ \theta \gamma f^{ \sigma ^{0}}_{t}|\mathcal {F}^{0}_{t} ] -\phi ^{(3)}_{t} + \frac{\theta \gamma}{1-g_{t}}\phi ^{\sigma ^{0}}_{t}\mathbb{E}[ \phi ^{(1)}_{t}| \mathcal {F}^{0}_{t} ] \bigg)\mathbb{E}[ \psi ^{\sigma ^{0}}_{t} \widetilde{Z}^{0}_{t}|\mathcal {F}^{0}_{t} ] \\ & \phantom{=:} +\theta \gamma \bigg( - \mathbb{E}\bigg[ \frac{\theta \gamma \phi ^{(1)}_{t} }{(1-\gamma )(1-g_{t})} \bigg| \mathcal {F}^{0}_{t} \bigg] \\ & \phantom{=:} \quad \qquad +\mathbb{E}\bigg[ \frac{ \theta ^{2} \gamma ^{2}\psi ^{\sigma ^{0}}_{t} }{(1-\gamma )(1-g_{t})^{2}} \bigg|\mathcal {F}^{0}_{t}\bigg]\mathbb{E}[\phi ^{(1)}_{t}|\mathcal {F}^{0}_{t}] \bigg)\mathbb{E}[ \psi ^{\sigma ^{0}}_{t} \widetilde{Z}^{0}_{t}| \mathcal {F}^{0}_{t} ] \\ & \phantom{=:} +\theta \gamma \mathbb{E}\bigg[ \frac{ \phi _{t}^{(1)}}{1-\gamma} \widetilde{Z}^{0}_{t} \bigg|\mathcal {F}^{0}_{t} \bigg] -\theta \gamma \mathbb{E}[\phi ^{(1)}_{t}|\mathcal {F}^{0}_{t}] \mathbb{E}\bigg[ \frac{\theta \gamma \psi ^{\sigma ^{0}}_{t}}{(1-\gamma )(1-g_{t})} \widetilde{Z}^{0}_{t} \bigg|\mathcal {F}^{0}_{t} \bigg] \\ & \phantom{=:} -\theta \gamma \mathbb{E}[ f^{\sigma ^{0}}_{t}\widetilde{Z}^{0}_{t}| \mathcal {F}^{0}_{t} ]+\bigg(\phi ^{(3)}_{t}- \frac{\theta \gamma}{1-g_{t}}\phi ^{\sigma ^{0}}_{t}\mathbb{E}[\phi ^{(1)}_{t}| \mathcal {F}^{0}_{t}]\bigg) \widetilde{Z}^{0}_{t}, \end{aligned}$$

the cross-terms involving both \(\widetilde{Z}\) and \(\widetilde{Z}^{0}\) are given by

$$\begin{aligned} \mathcal {I}_{3}(t;\widetilde{Z},\widetilde{Z}^{0}_{t}) &= - \frac{\theta \gamma ^{2}\psi}{1-g_{t}}\widetilde{Z}_{t}\mathbb{E}[ \psi ^{\sigma ^{0}}_{t}\widetilde{Z}^{0}_{t}|\mathcal {F}^{0}_{t} ]- \frac{\theta \gamma \phi _{t}^{\sigma ^{0}}}{1-g_{t}}\mathbb{E}[ \psi _{t} \widetilde{Z}_{t}|\mathcal {F}^{0}_{t} ]\widetilde{Z}^{0}_{t} \\ & \phantom{=:} +\frac{\theta ^{2}\gamma ^{2}\phi _{t}^{\sigma ^{0}}}{(1-g_{t})^{2}} \mathbb{E}[\psi _{t}\widetilde{Z}_{t}|\mathcal {F}^{0}_{t}]\mathbb{E}[ \psi _{t}^{\sigma ^{0}}\widetilde{Z}^{0}_{t}|\mathcal {F}^{0}_{t} ] \\ & \phantom{=:} -\theta \gamma \mathbb{E}\bigg[ \frac{ \theta \gamma \psi _{t}^{\sigma ^{0}}}{(1-\gamma )(1-g_{t})} \widetilde{Z}^{0}_{t} \bigg|\mathcal {F}^{0}_{t} \bigg] \mathbb{E}[\psi _{t} \widetilde{Z}_{t}|\mathcal {F}^{0}_{t}] \\ & \phantom{=:} +\theta \gamma \mathbb{E}\bigg[ \frac{ \theta ^{2}\gamma ^{2}\psi _{t}^{\sigma ^{0}} }{(1-\gamma )(1-g_{t})^{2}} \bigg|\mathcal {F}^{0}_{t} \bigg] \mathbb{E}[ \psi _{t}\widetilde{Z}_{t}| \mathcal {F}^{0}_{t} ] \mathbb{E}[ \psi _{t}^{\sigma ^{0}}\widetilde{Z}^{0}_{t}| \mathcal {F}^{0}_{t} ] \\ & \phantom{=:} +\theta \gamma \mathbb{E}\bigg[ \frac{ \psi _{t}}{1-\gamma} \widetilde{Z}_{t}\widetilde{Z}^{0}_{t} \bigg|\mathcal {F}^{0}_{t} \bigg] \\ & \phantom{=:} -\theta \gamma \mathbb{E}\bigg[ \frac{ \theta \gamma \psi _{t} }{(1-\gamma )(1-g_{t})}\widetilde{Z}_{t} \bigg|\mathcal {F}^{0}_{t} \bigg] \mathbb{E} [ \psi _{t}^{\sigma ^{0}} \widetilde{Z}^{0}_{t}|\mathcal {F}^{0}_{t} ], \end{aligned}$$

and the remaining terms are given by

$$ \begin{aligned} \mathcal {I}_{4}(t) &= \frac{ (\theta \gamma )^{2}\phi ^{\sigma ^{0}}_{t} }{2(1-g_{t})^{2}}( \mathbb{E}[\phi ^{(1)}_{t}|\mathcal {F}^{0}_{t}])^{2} - \frac{\theta \gamma}{1-g_{t}} (- \mathbb{E}[ \theta \gamma f^{\sigma ^{0}}_{t} |\mathcal {F}^{0}_{t}]+\phi ^{(3)}_{t} )\mathbb{E}[\phi ^{(1)}_{t}| \mathcal {F}^{0}_{t}] \\ & \phantom{=:} +\theta \gamma \mathbb{E}\bigg[ \frac{(\sigma ^{2}_{t}+(\sigma ^{0}_{t})^{2})| \phi ^{(1)}_{t} |^{2} }{2} \bigg|\mathcal {F}^{0}_{t} \bigg] \\ & \phantom{=:} - \theta \gamma \mathbb{E}[ \phi ^{(1)}_{t}|\mathcal {F}^{0}_{t} ] \mathbb{E}\bigg[ \frac{\theta \gamma \phi _{t}^{(1)}}{(1-\gamma )(1-g_{t})} \bigg| \mathcal {F}^{0}_{t} \bigg] \\ & \phantom{=:} +\frac{\theta ^{3}\gamma ^{3}}{(1-g_{t})^{2}}\mathbb{E}\bigg[ \frac{\psi ^{\sigma ^{0}}_{t}}{2(1-\gamma )} \bigg|\mathcal {F}^{0}_{t} \bigg] ( \mathbb{E}[ \phi ^{(1)}_{t}|\mathcal {F}^{0}_{t} ] )^{2} \\ & \phantom{=:} -\theta \gamma \mathbb{E}[ f^{h}_{t}+f_{t}^{\sigma }Z^{\bar{o}}_{t} + f^{ \sigma ^{0}}_{t}Z^{0,\bar{o}}_{t} |\mathcal {F}^{0}_{t}]. \end{aligned} $$

Appendix B: Reverse Hölder inequality

We summarise the reverse Hölder inequality for a general stochastic process and for the stochastic exponential of a stochastic process in the space BMO, see Kazamaki [20, Theorem 3.1], which is used in the main text.

For some \(p>1\), we say that a stochastic process \(D\) satisfies the reverse Hölder inequality \(R_{p}\) if there exists a constant \(C\) such that for any \([0,T]\)-valued stopping time \(\tau \), it holds that

$$ \mathbb{E}\bigg[ \Big|\frac{D_{T}}{D_{\tau}} \Big|^{p}\bigg|\mathcal {F}_{ \tau }\bigg]\leq C. $$

Let \(\Theta \in H^{2}_{{\mathrm{BMO}}}\) and \(B\) be a Brownian motion. Define

$$ \mathcal {E}(\Theta )=\mathcal {E}\bigg( \int _{0}^{\cdot }\Theta _{s}\,dB_{s} \bigg). $$

Let \(\Phi \) be the function defined on \((1,\infty )\) by

$$ \Phi (x)=\bigg( 1+\frac{1}{x^{2}}\log \frac{2x-1}{2(x-1)} \bigg)^{ \frac{1}{2}}-1. $$

Then \(\Phi \) is continuous and decreasing with \(\lim _{x\searrow 1}\Phi (x)=\infty \) and \(\lim _{x\nearrow \infty}\Phi (x)=0\). Let \(p_{\Theta}\) be the unique constant such that \(\Phi (p_{\Theta})=\|\Theta \|_{{\mathrm{BMO}}}\). Then we have the following reverse Hölder inequality.

Lemma B.1

For any \(1< p< p_{\Theta}\) and any stopping time \(\tau \), \(\mathcal {E}(\Theta )\) satisfies the reverse Hölder inequality \(R_{p}\). In particular,

$$ \mathbb{E}\bigg[ \Big| \frac{\mathcal {E}_{T}(\Theta )}{\mathcal {E}_{\tau}(\Theta )} \Big|^{p} \bigg|\mathcal {F}_{\tau}\bigg]\leq K(p,\|\Theta \|_{{\mathrm{BMO}}}), $$

where

$$ K(p, x)=\frac{2}{1-\frac{2(p-1)}{2p-1}e^{p^{2}( x^{2}+2x )} }. $$

Appendix C: Energy inequality

We summarise here the energy inequality (see Kazamaki [20, Sect. 2.1] or Meyer [25, Remark 59, Chap. VII. 6]) in the form of Itô integrals, because this is frequently used in the main text.

Let \(Z\in H^{2}_{{\mathrm{BMO}}}\) and \(B\) be a Brownian motion. Then we have the following energy inequality for the Itô integral \(\int _{0}^{\cdot }Z_{s}\,dB_{s}\).

Lemma C.1

For each integer \(n\), it holds that

$$ \mathbb{E}\left [ \left \langle \int _{0}^{\cdot }Z_{s}\,dB_{s} \right \rangle ^{n}_{T} \right ] \leq n! \operatorname {ess\,sup}_{\tau}\left \| \mathbb{E}\left [ \left .\left \langle \int _{0}^{\cdot }Z_{s} \,dB_{s} \right \rangle _{T} - \left \langle \int _{0}^{\cdot }Z_{s} \,dB_{s} \right \rangle _{\tau }\right | \mathcal {F}_{\tau}\right ] \right \|_{ \infty}^{n}, $$

where the supremum is taken over all stopping times. Equivalently, for each integer \(n\), we have

$$ \mathbb{E}\bigg[ \bigg( \int _{0}^{T} Z^{2}_{s}\,ds \bigg)^{n} \bigg] \leq n! \|Z\|^{2n}_{{\mathrm{BMO}}}. $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, G., Zhou, C. Mean field portfolio games. Finance Stoch 27, 189–231 (2023). https://doi.org/10.1007/s00780-022-00492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-022-00492-9

Keywords

Mathematics Subject Classification (2020)

JEL Classification

Navigation