Skip to main content
Log in

Interactions of a boron-containing levodopa derivative on D2 dopamine receptor and its effects in a Parkinson disease model

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Levodopa is a cornerstone in Parkinson’s disease treatment. Beneficial effects are mainly by binding on D2 receptors. Docking simulations of a set of compounds including well-known D2-ligands and a pool of Boron-Containing Compounds (BCC), particularly boroxazolidones with a tri/tetra-coordinated boron atom, were performed on the D2 Dopamine receptor (D2DR). Theoretical results yielded higher affinity of the compound DPBX, a Dopaboroxazolidone, than levodopa on D2DR. Essential interactions with residues in the third and sixth transmembrane domains of the D2DR appear to be crucial to induce and stabilize interactions in the active receptor state. Results from a motor performance evaluation of a murine model of Parkinson’s disease agree with theoretical results, as DPBX showed similar efficacy to that of levodopa for diminishing MPTP-induced parkinsonism. This beneficial effect was disrupted with prior Risperidone (D2DR antagonist) administration, supporting the role of D2DR in the biological effect of DPBX. In addition, DPBX limited neuronal loss in substantia nigra in a similar manner to that of levodopa administration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The data are in the manuscript and the Supplementary Material. Any other data or detail can be obtained by contacting the corresponding author.

References

  1. Mao Q, Qin W, Zhang A, Ye N (2020) Recent advances in dopaminergic strategies for the treatment of Parkinson’s disease. Acta Pharmacol Sin. https://doi.org/10.1038/s41401-020-0365-y

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chien EYT (2012) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science. https://doi.org/10.1126/science.1197410

    Article  PubMed  Google Scholar 

  3. Vaughan RA, Foster JD (2014) Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol Sci 34:1–16. https://doi.org/10.1016/j.tips.2013.07.005.Mechanisms

    Article  Google Scholar 

  4. Hattoria N, Wanga M, Taka H et al (2009) Toxic effects of dopamine metabolism in Parkinson’s disease. Park Relat Disord 15:35–38. https://doi.org/10.1016/S1353-8020(09)70010-0

    Article  Google Scholar 

  5. Beaulieu J, Gainetdinov RR (2011) The physiology signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217. https://doi.org/10.1124/pr.110.002642.182

    Article  CAS  PubMed  Google Scholar 

  6. Rewar S (2015) A systematic review on Parkinson’s disease (PD). Indian J Res Pharm Biotechnol Suresh 3:176–185

    CAS  Google Scholar 

  7. Charvin D, Medori R, Hauser RA, Rascol O (2018) Therapeutic strategies for Parkinson. Nat Publ Gr. https://doi.org/10.1038/nrd.2018.136

    Article  Google Scholar 

  8. Zhuang Y, Xu P, Mao C et al (2021) Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell 184:931–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scarano W, Lu H, Stenzel MH (2014) Boronic acid ester with dopamine as a tool for bioconjugation and for visualization of cell apoptosis. Chem Commun 50:6390–6393. https://doi.org/10.1039/C3CC49100E

    Article  CAS  Google Scholar 

  10. Eryilmaz IE, Erer S, Zarifoglu M et al (2020) Contribution of functional dopamine D2 and D3 receptor variants to motor and non-motor symptoms of early onset Parkinson’s disease. Clin Neurol Neurosurg. https://doi.org/10.1016/j.clineuro.2020.106257

    Article  PubMed  Google Scholar 

  11. Yin J, Chen KYM, Clark MJ et al (2020) Structure of a D2 dopamine receptor–G-protein complex in a lipid membrane. Nature. https://doi.org/10.1038/s41586-020-2379-5

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fox SH, Katzenschlager R, Lim S et al (2018) International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord 33:1248–1266

    Article  CAS  PubMed  Google Scholar 

  13. Soriano-Ursúa MA, McNaught-Flores DA, Nieto-Alamilla G et al (2012) Cell-based and in-silico studies on the high intrinsic activity of two boron-containing salbutamol derivatives at the human beta2-adrenoceptor. Bioorganic Med Chem. https://doi.org/10.1016/j.bmc.2011.11.054

    Article  Google Scholar 

  14. Soriano-Ursúa MA, Bello M, Hernández-Martínez CF et al (2019) Cell-based assays and molecular dynamics analysis of a boron-containing agonist with different profiles of binding to human and guinea pig beta2 adrenoceptors. Eur Biophys J. https://doi.org/10.1007/s00249-018-1336-9

    Article  PubMed  Google Scholar 

  15. Lu C-J, Hu J, Wang Z et al (2018) Discovery of boron-containing compounds as Aβ aggregation inhibitors and antioxidants for the treatment of Alzheimer’s disease. Medchemcomm 9:1862–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maiti P, Manna J, Burch ZN et al (2020) Ameliorative Properties of Boronic Compounds in In Vitro and In Vivo Models of Alzheimer’s Disease. Int J Mol Sci 21:6664

    Article  CAS  PubMed Central  Google Scholar 

  17. Küçükdoğru R, Türkez H, Arslan ME et al (2020) Neuroprotective effects of boron nitride nanoparticles in the experimental Parkinson’s disease model against MPP+ induced apoptosis. Metab Brain Dis. https://doi.org/10.1007/s11011-020-00559-6

    Article  PubMed  Google Scholar 

  18. Hilger D, Masureel M, Kobilka BK (2018) Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol 25:4–12. https://doi.org/10.1038/s41594-017-0011-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sandoval A, Eichler S, Madathil S et al (2016) The molecular switching mechanism at the conserved D(E)RY motif in class-A GPCRs. Biophys J 111:79–89. https://doi.org/10.1016/j.bpj.2016.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang R, Xie X (2012) Tools for GPCR drug discovery. Nat Publ Gr 33:372–384. https://doi.org/10.1038/aps.2011.173

    Article  CAS  Google Scholar 

  21. Ocampo-Néstor AL, López-Mayorga RM, Castillo-Henkel EF et al (2019) Design, synthesis and in vitro evaluation of a Dopa-organoboron compound that acts as a bladder relaxant through non-catecholamine receptors. Mol Divers 23:361–370. https://doi.org/10.1007/s11030-018-9883-7

    Article  CAS  PubMed  Google Scholar 

  22. Meredith GE, Rademacher DJ (2012) MPTP mouse models of Parkinson’s disease: an update. J Park Dis 1:19–33. https://doi.org/10.3233/JPD-2011-11023.MPTP

    Article  Google Scholar 

  23. Soriano-Ursua MA, Ocampo-López JO, Ocampo-Mendoza K et al (2011) Theoretical study of 3-D molecular similarity and ligand binding modes of orthologous human and rat D2 dopamine receptors. Comput Biol Med 41:537–545. https://doi.org/10.1016/j.compbiomed.2011.04.018

    Article  CAS  PubMed  Google Scholar 

  24. Wang S, Che T, Levit A et al (2018) Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature. https://doi.org/10.1038/nature25758

    Article  PubMed  PubMed Central  Google Scholar 

  25. Phillips JC, Hardy DJ, Maia JDC et al (2020) Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys. https://doi.org/10.1063/5.0014475

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fan L, Tan L, Chen Z et al (2020) Haloperidol bound D2 dopamine receptor structure inspired the discovery of subtype selective ligands. Nat Commun. https://doi.org/10.1038/s41467-020-14884-y

    Article  PubMed  PubMed Central  Google Scholar 

  27. Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors - IUPHAR review 13. Br J Pharmacol. https://doi.org/10.1111/bph.12906

    Article  PubMed  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB et al (2010) Gaussian09 revision D.01. Gaussian Inc., Wallingford (Gaussian 09 Revis. C.01)

    Google Scholar 

  29. Soriano-Ursúa MA, Arias-Montaño JA, Correa-Basurto J et al (2015) Insights on the role of boron containing moieties in the design of new potent and efficient agonists targeting the β2 adrenoceptor. Bioorganic Med Chem Lett. https://doi.org/10.1016/j.bmcl.2014.12.077

    Article  Google Scholar 

  30. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  31. Morris G, Huey R, Linkstrom W et al (2010) AutoDock4 and AutoDocktools4: automated docking with selective receptor flexibility. J Comput Chem. https://doi.org/10.1002/jcc

    Article  Google Scholar 

  32. Alarcón AA, Santamaría A, Königsberg F (2013) Modelos neurotóxicos de la enfermedad de parkinson y disfunción mitocondrial. Rev Educ Bioquím 29(3):92–100

    Google Scholar 

  33. Sedelis M, Hofele K, Auburger GW et al (2000) MPTP susceptibility in the mouse: Behavioral, neurochemical, and histological analysis of gender and strain differences. Behav Genet 30:171–182. https://doi.org/10.1023/A:1001958023096

    Article  CAS  PubMed  Google Scholar 

  34. Luchtman DW, Shao D, Song C (2009) Physiology and behavior behavior, neurotransmitters and infl ammation in three regimens of the MPTP mouse model of Parkinson ’ s disease. Physiol Behav 98:130–138. https://doi.org/10.1016/j.physbeh.2009.04.021

    Article  CAS  PubMed  Google Scholar 

  35. Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2:141–151. https://doi.org/10.1038/nprot.2006.342

    Article  CAS  PubMed  Google Scholar 

  36. Farfán-García ED, Abad-García A, Alatorre A et al (2020) Olive oil limited motor disruption and neuronal damage in parkinsonism induced by MPTP administration. Toxicol Res Appl 4:2397847320922939. https://doi.org/10.1177/2397847320922939 

  37. Gould TD, Dao DT, Kovacsics CE (2009) The open field test. Neuromethods 42:1–20. https://doi.org/10.1007/978-1-60761-303-9_1

  38. Shiotsuki H, Yoshimi K, Shimo Y et al (2010) A rotarod test for evaluation of motor skill learning. J Neurosci Methods 189:180–185. https://doi.org/10.1016/j.jneumeth.2010.03.026

    Article  PubMed  Google Scholar 

  39. Karl T, Pabst R, Von Hörsten S (2003) Behavioral phenotyping of mice in pharmacological and toxicological research. Exp Toxicol Pathol. https://doi.org/10.1078/0940-2993-00301

    Article  PubMed  Google Scholar 

  40. Lane E, Dunnett S (2008) Animal models of Parkinson’s disease and L-dopa induced dyskinesia: How close are we to the clinic? Psychopharmacology 199:303–312. https://doi.org/10.1007/s00213-007-0931-8

    Article  CAS  PubMed  Google Scholar 

  41. Pérez-Rodríguez M, García-Mendoza E, Farfán-García ED et al (2017) Not all boronic acids with a five-membered cycle induce tremor, neuronal damage and decreased dopamine. Neurotoxicology. https://doi.org/10.1016/j.neuro.2017.06.004

    Article  PubMed  Google Scholar 

  42. Jackson DM, Westlind-danielssont A (1994) Dopamine receptors : molecular biology, biochemistry a n d behavioural aspects. Pharmacol Therapeut. https://doi.org/10.1016/0163-7258(94)90041-8

    Article  Google Scholar 

  43. Seeman P, Nam D, Ulpian C et al (2000) New dopamine receptor, D2 Longer, with unique TG splice site in human. Mol Brain Res 76:132–141

    Article  CAS  PubMed  Google Scholar 

  44. Southan C, Sharman JL, Benson HE et al (2016) The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Res. https://doi.org/10.1093/nar/gkv1037

    Article  PubMed  Google Scholar 

  45. Rosalez NM, Estevez-Fregoso E, Alatorre A et al (2019) 2-Aminoethyldiphenyl borinate: a multitarget compound with potential as a drug precursor. Curr Mol Pharmacol. https://doi.org/10.2174/1874467212666191025145429

    Article  Google Scholar 

  46. Soriano-Ursúa MA, Das BC, Trujillo-Ferrara JG (2014) Boron-containing compounds: Chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy. Expert Opin Ther Pat 24:485–500. https://doi.org/10.1517/13543776.2014.881472 

  47. Maruyama T, Kanaji T, Nakade S et al (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of ins(1,4,5)P3- induced Ca++ release. J Biochem 505:498–505. https://doi.org/10.1093/oxfordjournals.jbchem.a021780 

  48. Kim T, Joo C, Seong J et al (2015) Distinct mechanisms regulating mechanical force-induced Ca 2 + signals at the plasma membrane and the ER in human MSCs. Elife. https://doi.org/10.7554/eLife.04876

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang S, Che T, Levit A et al (2018) Structure of the D2 dopamine receptor bond to the atypical antipsychotic drug risperidone. Nat Publ Gr. https://doi.org/10.1038/nature25758

    Article  Google Scholar 

  50. Kalani MYS, Vaidehi N, Hall SE et al (2004) The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. Proc Natl Acad Sci 101:3815–3820. https://doi.org/10.1073/pnas.0400100101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Soriano-Ursúa MA, Farfán-García ED, López-Cabrera Y et al (2014) Boron-containing acids: Preliminary evaluation of acute toxicity and access to the brain determined by Raman scattering spectroscopy. Neurotoxicology 40:8–15. https://doi.org/10.1016/j.neuro.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  52. Walker WH, Rokita SE (2003) Use of a boroxazolidone complex of 3-iodo-L-tyrosine for palladium-catalyzed cross-coupling. J Chem 68:1563–1566

    CAS  Google Scholar 

  53. Trujillo J, Höpfl H, Castillo D et al (1999) X-ray crystallographic study of boroxazolidones obtained from L -ornithine, L-methionine, kainic acid and 2, 6-pyridinedicarboxylic acid. J Organomet Chem 571:21–29. https://doi.org/10.1016/S0022-328X(98)00893-6

    Article  Google Scholar 

  54. Brown HC, Gupta AK (1988) Chiral synthesis via organoboranes. XVI. Boroxazolidones derived from α-amino acids and borinic or boronic esters. A simple procedure for upgrading borinates and boronates to materials of high optical purity. J Organomet Chem 341:73–81. https://doi.org/10.1016/0022-328X(88)89064-8

    Article  CAS  Google Scholar 

  55. Buesking AW, Bacauanu V, Cai I, Ellman JA (2014) Asymmetric synthesis of protected α-amino boronic acid derivatives with an air- and moisture-stable Cu(II) catalyst. J Org Chem 79:3671–3677. https://doi.org/10.1021/jo500300t

    Article  CAS  PubMed  Google Scholar 

  56. Kling RC, Tschammer N, Lanig H et al (2014) Active-state model of a dopamine D2 receptor - Gαi complex stabilized by aripiprazole-type partial agonists. PLoS ONE 9:e100069. https://doi.org/10.1371/journal.pone.0100069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beaulieu J-M, Borrelli E, Carlsson A et al (2019) Dopamine receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guid Pharmacol CITE. https://doi.org/10.2218/gtopdb/f20/2019.4

    Article  Google Scholar 

  58. Pritchett K (2014) The rotarod. Technol Update 42:49

    Google Scholar 

  59. Soriano-Ursúa MA, Farfán-García ED, Geninatti-Crich S (2019) Turning fear of boron toxicity into boron-containing drug design. Curr Med Chem 26:5005–5018. https://doi.org/10.2174/0929867326666190327154954

    Article  CAS  Google Scholar 

  60. Urs NM, Peterson SM, Caron MG (2017) New concepts in dopamine D2 receptor biased signaling and implications for schizophrenia therapy. Biol Psychiatry 81:78–85. https://doi.org/10.1016/j.biopsych.2016.10.011

    Article  CAS  PubMed  Google Scholar 

  61. Zhang C, Li Q, Meng L, Ren Y (2020) Design of novel dopamine D2 and serotonin 5-HT2A receptors dual antagonists toward schizophrenia: an integrated study with QSAR, molecular docking, virtual screening and molecular dynamics simulations. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2019.1590244

    Article  PubMed  PubMed Central  Google Scholar 

  62. Di Monte DA, McCormack A, Petzinger G et al (2000) Relationship among nigrostriatal denervation, parkinsonism, and dyskinesias in the MPTP primate model. Mov Disord Off J Mov Disord Soc 15:459–466. https://doi.org/10.1002/1531-8257(200005)15:3<459::AID-MDS1006>3.0.CO;2-3 

  63. Dixit A, Srivastava G, Verma D et al (2013) Minocycline, levodopa and MnTMPyP induced changes in the mitochondrial proteome profile of MPTP and maneb and paraquat mice models of Parkinson’s disease. Biochim Biophys Acta (BBA) 1832:1227–1240. https://doi.org/10.1016/j.bbadis.2013.03.019

    Article  CAS  Google Scholar 

  64. Ghosh A, Roy A, Liu X et al (2007) Selective inhibition of NF-κB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci 104:18754–18759. https://doi.org/10.1073/pnas.0704908104

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pak ME, Ahn SM, Jung DH et al (2020) Electroacupuncture therapy ameliorates motor dysfunction via brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor in a mouse model of Parkinson’s disease. J Gerontol Ser A 75:712–721. https://doi.org/10.1093/gerona/glz256

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional for allowing us to use their facilities during the theoretical evaluation.

Funding

The authors thank the Comisión de Operación y Fomento de Actividades Académicas, the Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional (M2143), and the Consejo Nacional de Ciencia y Tecnología de México (CONACyT) for financial support and scholarships. ALO-N is the recipient of a post-doctoral fellowship at the current affiliation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin A. Soriano-Ursúa.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest in terms of the content of this manuscript.

Ethical approval

The biological procedures were approved by the Institutional Committee for the Care of Laboratory Animals (CICUAL-06/26–08-2019).

Consent for participation

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 266 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abad-García, A., Ocampo-Néstor, A.L., Das, B.C. et al. Interactions of a boron-containing levodopa derivative on D2 dopamine receptor and its effects in a Parkinson disease model. J Biol Inorg Chem 27, 121–131 (2022). https://doi.org/10.1007/s00775-021-01915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01915-2

Keywords

Navigation