Skip to main content
Log in

New dinuclear palladium(II) complexes with benzodiazines as bridging ligands: interactions with CT-DNA and BSA, and cytotoxic activity

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Three new dinuclear Pd(II) complexes with general formula [{Pd(en)Cl}2(μ-L)](NO3)2 [L is bridging ligand quinoxaline (Pd1), quinazoline (Pd2) and phthalazine (Pd3)] were synthesized and characterized by elemental microanalyses, UV–Vis, IR and NMR (1H and 13C) spectroscopy. The interaction of dinuclear Pd1–Pd3 complexes with calf thymus DNA (CT-DNA) has been monitored by viscosity measurements, UV–Vis and fluorescence emission spectroscopy in aqueous phosphate buffer solution (PBS) at pH 7.40 and 37 °C. In addition, these experimental conditions have been applied to investigate the binding affinities of Pd1–Pd3 complexes to the bovine serum albumin (BSA) by fluorescence emission spectroscopy. In vitro antiproliferative and apoptotic activities of the dinuclear Pd(II) complexes have been tested on colorectal and lung cancer cell lines. All tested Pd(II) complexes had lower cytotoxic effect than cisplatin against colorectal cancer cells, but also had similar or even higher cytotoxicity than cisplatin against lung cancer cells. All complexes induced apoptosis of colorectal and lung cancer cells, while the highest antiproliferative effect exerted Pd2 complex.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barton MK (2016) CA Cancer J Clin 66:91–92

    PubMed  Google Scholar 

  2. Mehlen P, Puisieux A (2006) Nat Rev Cancer 6:449–458

    CAS  PubMed  Google Scholar 

  3. Weigelt B, Peterse JL, van’t Veer LJ (2005) Nat Rev Cancer 5:591–602

    CAS  PubMed  Google Scholar 

  4. Bugarčić ŽD, Bogojeski J, van Eldik R (2015) Coord Chem Rev 229:91–106

    Google Scholar 

  5. Kapdi AR, Fairlamb IJ (2014) Chem Soc Rev 43:4751–4777

    CAS  PubMed  Google Scholar 

  6. Manzotti C, Pratesi G, Menta E, Di Domenico R, Cavalletti E, Fiebig HH, Kelland LR, Farrell N, Polizzi D, Supino R, Pezzoni G, Zunino F (2000) Clin Cancer Res 6:2626–2634

    CAS  PubMed  Google Scholar 

  7. Lukas J, Lukas C, Bartek J (2011) Nat Cell Biol 13(10):1161–1169

    CAS  PubMed  Google Scholar 

  8. Oren M (2003) Cell Death Differ 10(4):431–442

    CAS  PubMed  Google Scholar 

  9. Shahabadi N, Kashanian N, Fatahi SA (2011) Bioinorg Chem Appl 2011:7

    Google Scholar 

  10. Komeda S, Moulaei T, Woods KK, Chikuma M, Farrell NP, Williams DL (2006) J Am Chem Soc 128:16092–16103

    CAS  PubMed  Google Scholar 

  11. Wei XL, Xiao JB, Wang YF, Bai YL (2010) Spectrochim Acta Part A 75:299–304

    Google Scholar 

  12. Kandagal PB, Ashoka S, Seetharamappa J, Shaikh SMT, Jadegoud Y, Ijare OB (2006) J Pharm Biomed Anal 41(3):393–399

    CAS  PubMed  Google Scholar 

  13. Guo XJ, Hao AJ, Han XW, Kang PL, Jiang YC, Zhang XJ (2011) Mol Biol Rep 38:4185–4192

    CAS  PubMed  Google Scholar 

  14. Dimiza F, Fountoulaki S, Papadopoulos AN, Kontogiorgis CA, Tangoulis V, Raptopoulou CP, Psycharis V, Terzis A, Kessissoglou DP, Psomas G (2011) Dalton Trans 40:8555–8568

    CAS  PubMed  Google Scholar 

  15. Dimiza F, Perdih F, Tangoulis V, Turel I, Kessissoglou DP, Psomas G (2011) J Inorg Biochem 105:476–489

    CAS  PubMed  Google Scholar 

  16. Milinković SU, Parac TN, Djuran MI, Kostić NM (1997) J Chem Soc Dalton Trans 2771–2776

  17. Hohmann H, van Eldik R (1990) Inorg Chim Acta 174:87–92

    CAS  Google Scholar 

  18. Živković MD, Ašanin DP, Rajković S, Djuran MI (2011) Polyhedron 30:947–952

    Google Scholar 

  19. Ašanin DP, Živković MD, Rajković S, Warźajtis B, Rychlewska U, Djuran MI (2013) Polyhedron 51:255–262

    Google Scholar 

  20. Zhao G, Lin H, Zhu S, Sun HY, Chen Y (1998) J Inorg Biochem 70:219–226

    CAS  PubMed  Google Scholar 

  21. Komeda S, Kalayda GV, Lutz M, Spek AL, Yamanaka Y, Sato T, Chikuma M, Reedijk JJ (2003) J Med Chem 46:1210–1219

    CAS  PubMed  Google Scholar 

  22. Mosmann T (1983) J Immunol Methods 65(1–2):55–63

    CAS  Google Scholar 

  23. Milovanović M, Djeković A, Volarević V, Petrović B, Arsenijević N, Bugarcić ZD (2010) J Inorg Biochem 104(9):944–949

    PubMed  Google Scholar 

  24. Shounan Y, Feng X, O’Connell PJ (1998) J Immunol Methods 217:61–70

    CAS  PubMed  Google Scholar 

  25. Kim KH, Sederstrom JM (2015) Curr Protoc Mol Biol 111(1):28.6.1–28.6.11

    Google Scholar 

  26. Rajković S, Warźajtis B, Živković MD, Glišić BÐ, Rychlewska U, Djuran MI (2018) Bioinorg Chem Appl 2018:12

    Google Scholar 

  27. Živković MD, Rajković S, Glišić BÐ, Drašković NS, Djuran MI (2017) Bioorg Chem 72:190–198

    PubMed  Google Scholar 

  28. Chattopadhyay S, Chakraborty P, Drew MGB, Ghosh A (2009) Inorg Chim Acta 362:502–508

    CAS  Google Scholar 

  29. Zhang J-A, Pan M, Zhang J-Y, Zhang H-K, Fan Z-J, Kang B-S, Su C-Y (2009) Polyhedron 28(1):45–149

    Google Scholar 

  30. Sathyaraj G, Weyhermuller T, Nair BU (2010) Eur J Med Chem 45:284–291

    CAS  PubMed  Google Scholar 

  31. Radisavljević S, Bratsos I, Scheurer A, Korzekwa J, Masnikosa R, Tot A, Gligorijević N, Radulović S, Rilak Simović A (2018) Dalton Trans 47:13696–13712

    PubMed  Google Scholar 

  32. Kimar CV, Barton JK, Turro NJ (1985) J Am Chem Soc 107(19):5518–5523

    Google Scholar 

  33. Jiang M, Li Y, Wub Z, Liu Z, Yan C (2009) J Inorg Biochem 103:833–844

    CAS  PubMed  Google Scholar 

  34. Kelly TM, Tossi AB, McConnell DJ, Strekas TC (1985) Nucleic Acids Res 13:6017–6034

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Toneatto J, Arguello GA (2011) J Inorg Biochem 105(5):645–651

    CAS  PubMed  Google Scholar 

  36. Sulkowska A (2002) J Mol Struct 614:227–232

    CAS  Google Scholar 

  37. Jannesari Z, Hadadzadeh H, Amirghofran Z, Simpson J, Khayamian T, Maleki B (2015) Spectrochim Acta Part A Mol Biomol Spectrosc 136:1119–1133

    CAS  Google Scholar 

  38. Ćoćić D, Jovanović S, Nišavić M, Baskić D, Todorović D, Popović S, Bugarčić ŽD, Petrović B (2017) J Inorg Biochem 175:67–79

    PubMed  Google Scholar 

  39. Makarska-Bialokoz M (2018) Spectrochim Acta Part A Mol Biomol Spectrosc 193:23–32

    CAS  Google Scholar 

  40. Rajendiran V, Karthik R, Palaniandavar M, Stoeckli-Evans H, Periasamy VS, Akbarsha MA, Srinag BS, Krishnamurthy H (2007) Inorg Chem 46:8208–8221

    CAS  PubMed  Google Scholar 

  41. Jovanović S, Obrenčević K, Bugarčić ŽD, Popović I, Žakula J, Petrović B (2016) Dalton Trans 45:12444–12457

    PubMed  Google Scholar 

  42. Li Y, Lu W, Saini SK, Moukha-Chafiq O, Pathak V, Ananthan S (2016) Oncotarget 7(10):11263–11270

    PubMed  PubMed Central  Google Scholar 

  43. Sibiya MA, Raphoko L, Mangokoana D, Makola R, Nxumalo W, Matsebatlela TM (2019) Molecules 24(3):407–423

    PubMed Central  Google Scholar 

  44. Tanaka M, Kataoka H, Yano S, Ohi H, Kawamoto K, Shibahara T, Mizoshita T, Mori Y, Tanida S, Kamiya T, Joh T (2013) BMC Cancer 13:237–246

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cosaert J, Quoix E (2002) Br J Cancer 87(8):825–833

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kacar O, Adiguzel Z, Yilmaz VT, Cetin Y, Cevatemre B, Arda N, Baykal AT, Ulukaya E, Acilan C (2014) Anticancer Drugs 25(1):17–29

    CAS  PubMed  Google Scholar 

  47. Adiguzel Z, Baykal AT, Kacar O, Yilmaz VT, Ulukaya E, Acilan C (2014) J Proteome Res 13(11):5240–5249

    CAS  PubMed  Google Scholar 

  48. Smalley KS, Contractor R, Haass NK, Lee JT, Nathanson KL, Medina CA, Flaherty KT, Herlyn M (2007) Br J Cancer 96(3):445–449

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang B, Luo H, Xu Q, Lin L, Zhang B (2017) Oncotarget 8(8):13620–13631

    PubMed  PubMed Central  Google Scholar 

  50. Kacar O, Cevatemre B, Hatipoglu I, Arda N, Ulukaya E, Yilmaz VT, Acilan C (2017) Bioorg Med Chem 25(6):1770–1777

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, under Grant nos. 172036, 172011, 175071, 175069 and 175103. This research has also received funding from the Serbian Academy of Sciences and Arts under strategic projects programme—Grant agreement no. 01-2019-F65 and project of this institution no. F128, as well as bilateral project with PR China (06/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snežana Rajković.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franich, A.A., Živković, M.D., Ćoćić, D. et al. New dinuclear palladium(II) complexes with benzodiazines as bridging ligands: interactions with CT-DNA and BSA, and cytotoxic activity. J Biol Inorg Chem 24, 1009–1022 (2019). https://doi.org/10.1007/s00775-019-01695-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01695-w

Keywords

Navigation