Skip to main content
Log in

Ironing out pyoverdine’s chromophore structure: serendipity or design?

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Pyoverdines are Pseudomonas aeruginosa’s primary siderophores. These molecules, composed of a fluorescent chromophore attached to a peptide chain of 6–14 amino acids, are synthesized by the bacterium to scavenge iron (essential to its survival and growth) from its environment. Hijacking the siderophore pathway to use pyoverdine–antibiotic compounds in a Trojan horse approach has shown promise but remains very challenging because of the synthetic efforts involved. Indeed, both possible approaches (grafting an antibiotic on pyoverdine harvested from Pseudomonas or designing a total synthesis route) are costly, time-consuming and low-yield tasks. Designing comparatively simple analogs featuring the salient properties of the original siderophore is thus crucial for the conception of novel antibiotics to fight bacterial resistance. In this work, we focus on the replacement of the pyoverdine chromophore, a major roadblock on the synthetic pathway. We propose three simpler analogs and evaluate their ability to complex iron and interact with the FpvA transporter using molecular modeling techniques. Based on these results, we discuss the role of the native chromophore’s main features (polycyclicity, positive charge, flexibility) on pyoverdine’s ability to bind iron and be recognized by membrane transporter FpvA and propose guidelines for the design of effective synthetic siderophores.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zilberberg MD, Shorr AF (2013) J Hosp Med 8:559–563

    PubMed  Google Scholar 

  2. Croughs PD, Li B, Hoogkamp-Korstanje JA, Stobberingh E, Antibiotic Resistance Surveillance G (2013) Eur J Clin Microbiol Infect Dis 32:283–288

    Article  CAS  PubMed  Google Scholar 

  3. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, Kallen A, Limbago B, Fridkin S, National Healthcare Safety Network T, Participating NF (2013) Infect. Control Hosp Epidemiol 34:1–14

    Article  Google Scholar 

  4. Nations U. Draft political declaration of the high-level meeting of the General Assembly on antimicrobial resistance. 2016. http://www.un.org/pga/71/wp-content/uploads/sites/40/2016/09/DGACM_GAEAD_ESCAB-AMR-Draft-Political-Declaration-1616108E.pdf. Accessed 1 June 2019

  5. Brickner SJ, Barbachyn MR, Hutchinson DK, Manninen PR (2008) J Med Chem 51:1981–1990

    Article  CAS  PubMed  Google Scholar 

  6. Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA, Foster S, Gilmore BF, Hancock RE, Harper D, Henderson IR, Hilpert K, Jones BV, Kadioglu A, Knowles D, Olafsdottir S, Payne D, Projan S, Shaunak S, Silverman J, Thomas CM, Trust TJ, Warn P, Rex JH (2016) Lancet Infect Dis 16:239–251

    Article  CAS  PubMed  Google Scholar 

  7. de la Fuente-Nunez C, Reffuveille F, Fernandez L, Hancock RE (2013) Curr Opin Microbiol 16:580–589

    Article  CAS  PubMed  Google Scholar 

  8. de la Fuente-Nunez C, Reffuveille F, Haney EF, Straus SK, Hancock RE (2014) PLoS Pathog 10:e1004152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li XZ, Ma D, Livermore DM, Nikaido H (1994) Antimicrob Agents Chemother 38:1742–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poole K, Srikumar R (2001) Curr Top Med Chem 1:31–57

    Article  Google Scholar 

  11. Zgurskaya HI, Lopez CA, Gnanakaran S (2015) ACS Infect. Dis. 1:512–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Munita JM, Arias CA (2016) Microbiol Spectr 4:VMBF-0016-2015

  13. Chandrangsu P, Rensing C, Helmann JD (2017) Nat Rev Microbiol 15:338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dumas Z, Ross-Gillespie A, Kummerli R (2013) Proc Biol Sci 280:20131055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng T, Nolan EM (2012) Metallomics 4:866–880

    Article  CAS  PubMed  Google Scholar 

  16. Hider RC, Kong X (2010) Nat Prod Rep 27:637–657

    Article  CAS  PubMed  Google Scholar 

  17. Brandel J, Humbert N, Elhabiri M, Schalk IJ, Mislin GL, Albrecht-Gary AM (2012) Dalton Trans 41:2820–2834

    Article  CAS  PubMed  Google Scholar 

  18. Greenwald J, Nader M, Celia H, Gruffaz C, Geoffroy V, Meyer JM, Schalk IJ, Pattus F (2009) Mol Microbiol 72:1246–1259

    Article  CAS  PubMed  Google Scholar 

  19. White P, Joshi A, Rassam P, Housden NG, Kaminska R, Goult JD, Redfield C, McCaughey LC, Walker D, Mohammed S, Kleanthous C (2017) Proc Natl Acad Sci USA 114:12051–12056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Budzikiewicz H (2001) Curr Top Med Chem 1:73–82

    Article  CAS  PubMed  Google Scholar 

  21. Ghosh M, Miller MJ (1996) Bioorg Med Chem 4:43–48

    Article  CAS  PubMed  Google Scholar 

  22. Mies KA, Gebhardt P, Mollmann U, Crumbliss AL (2008) J Inorg Biochem 102:850–861

    Article  CAS  PubMed  Google Scholar 

  23. Mislin GL, Schalk IJ (2014) Metallomics 6:408–420

    Article  CAS  PubMed  Google Scholar 

  24. Kinzel O, Tappe R, Gerus I, Budzikiewicz H (1998) J Antibiot 51:499–507

    Article  CAS  Google Scholar 

  25. Kinzel O, Budzikiewicz H (1999) J Pept Res 53:618–625

    Article  CAS  PubMed  Google Scholar 

  26. Szebesczyk A, Olshvang E, Shanzer A, Carver PL, Gumienna-Kontecka E (2016) Coord Chem Rev 327–328:84–109

    Article  CAS  Google Scholar 

  27. Pletzer D, Mansour SC, Wuerth K, Rahanjam N, Hancock RE (2017) mBio 8

    Article  CAS  Google Scholar 

  28. Post SJ, Shapiro JA, Wuest WM (2019) MedChemComm 10:505–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marvig RL, Damkiaer S, Khademi SM, Markussen TM, Molin S, Jelsbak L (2014) mBio 5:e00914–e00966

    Article  CAS  Google Scholar 

  30. de Carvalho CC, Fernandes P (2014) Front Microbiol 5:290

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jordan EO (1899) Bot Gaz 27:19–36

    Article  Google Scholar 

  32. Teintze M, Hossain MB, Barnes CL, Leong J, van der Helm D (1981) Biochemistry 20:6446–6457

    Article  CAS  PubMed  Google Scholar 

  33. Budzikiewicz H (2004) Fortschr Chem Org Naturst 87:81–237

    CAS  PubMed  Google Scholar 

  34. Meyer JM, Gruffaz C, Raharinosy V, Bezverbnaya I, Schafer M, Budzikiewicz H (2008) Biometals 21:259–271

    Article  CAS  PubMed  Google Scholar 

  35. Bouvier B, Cezard C, Sonnet P (2015) Phys Chem Chem Phys 17:18022–18034

    Article  CAS  PubMed  Google Scholar 

  36. Bouvier B, Cezard C (2017) Phys Chem Chem Phys 19:29498–29507

    Article  CAS  PubMed  Google Scholar 

  37. Antonietti V, Boudesocque S, Dupont L, Farvacques N, Cezard C, Da Nascimento S, Raimbert JF, Socrier L, Robin TJ, Morandat S, El Kirat K, Mullie C, Sonnet P (2017) Eur J Med Chem 137:338–350

    Article  CAS  PubMed  Google Scholar 

  38. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  39. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  40. Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter 37:785–789

    Article  CAS  PubMed  Google Scholar 

  41. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    Article  CAS  PubMed  Google Scholar 

  42. Zhao Y, Truhlar DG (2008) Ther Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  43. Hirao H, Thellamurege N, Zhang X (2014) Front. Chem. 2:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kepp KP (2013) Coord Chem Rev 257:196–209

    Article  CAS  Google Scholar 

  45. Verma P, Varga Z, Klein JEMN, Cramer CJ, Que L, Truhlar DG (2017) Phys Chem Chem Phys 19:13049–13069

    Article  CAS  PubMed  Google Scholar 

  46. Domagal-Goldman SD, Paul KW, Sparks DL, Kubicki JD (2009) Geochim Cosmochim Acta 73:1–12

    Article  CAS  Google Scholar 

  47. Liu Q, Lu X, Li L, Zhang H, Liu G, Zhong H, Zeng H (2016) J Phys Chem C 120:21670–21677

    Article  CAS  Google Scholar 

  48. Moreno M, Zacarias A, Porzel A, Velasquez L, Gonzalez G, Alegria-Arcos M, Gonzalez-Nilo F, Gross EKU (2018) Spectrochim Acta A Mol Biomol Spectrosc 198:264–277

    Article  CAS  PubMed  Google Scholar 

  49. Kaviani S, Izadyar M, Housaindokht MR (2017) Comput Biol Chem 67:114–121

    Article  CAS  PubMed  Google Scholar 

  50. Matin MA, Chitumalla RK, Lim M, Gao X, Jang J (2015) J. Phys. Chem. B 119:5496–5504

    Article  CAS  PubMed  Google Scholar 

  51. Matin M, Islam M, Bredow T, Aziz M (2017) Adv Chem Eng Sci 7:137–153

    Article  CAS  Google Scholar 

  52. Bader RFW (1994) Atoms in molecules: a quantum theory. Oxford University Press, Oxford, UK

    Google Scholar 

  53. Matta CF, Boyd RJ (2007) An introduction to the quantum theory of atoms in molecules. In: Matta CF, Boyd RJ (eds) The quantum theory of atoms in molecules, Wiley-Vch Verlag, Weinheim, Germany, pp 1–34

    Chapter  Google Scholar 

  54. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins 65:712–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Giammona DA (1984) PhD thesis. 1984, University of California: Davis

  56. Essmann U, Perera L, Berkowitz ML, Darden TA, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  57. Liu Y, Liu Y, Drew MGB (2014) Coord Chem Rev 260:37–64

    Article  CAS  Google Scholar 

  58. Mashiach R, Meijler MM (2013) Org Lett 15:1702–1705

    Article  CAS  PubMed  Google Scholar 

  59. Wang X, Liu C, Zeng X, Wang X, Wang X, Hu Y (2017) Org Lett 19:3378–3381

    Article  CAS  PubMed  Google Scholar 

  60. Shanzer A, Libman J, Lifson S, Felder CE (1986) J Am Chem Soc 108:7609–7619

    Article  CAS  PubMed  Google Scholar 

  61. Boukhalfa H, Crumbliss AL (2002) Biometals 15:325–339

    Article  CAS  PubMed  Google Scholar 

  62. Raymond KN, Isied SS, Brown LD, Fronczek FR, Nibert JH (1976) J Am Chem Soc 98:1767–1774

    Article  CAS  PubMed  Google Scholar 

  63. Hay BP, Dixon DA, Vargas R, Garza J, Raymond KN (2001) Inorg Chem 40:3922–3935

    Article  CAS  PubMed  Google Scholar 

  64. Dertz EA, Xu J, Stintzi A, Raymond KN (2006) J Am Chem Soc 128:22–23

    Article  CAS  PubMed  Google Scholar 

  65. Griffin AS, West SA, Buckling A (2004) Nature 430:1024–1027

    Article  CAS  PubMed  Google Scholar 

  66. Rapp MV, Maier GP, Dobbs HA, Higdon NJ, Waite JH, Butler A, Israelachvili JN (2016) J Am Chem Soc 138:9013–9016

    Article  CAS  PubMed  Google Scholar 

  67. Maier GP, Butler A (2017) J Biol Inorg Chem 22:739–749

    Article  CAS  PubMed  Google Scholar 

  68. Li Y, Wang T, Xia L, Wang L, Qin M, Li Y, Wang W, Cao Y (2017) J Mater Chem B 5:4416–4420

    Article  CAS  PubMed  Google Scholar 

  69. Ravel J, Cornelis P (2003) Trends Microbiol 11:195–200

    Article  CAS  PubMed  Google Scholar 

  70. Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML (2002) Proc Natl Acad Sci USA 99:7072–7077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Région Picardie for financial support (SIDERBACT Grant—Projets Régionaux Structurants 2011). The calculations presented in this work were performed using HPC resources from the MATRICS computing platform of Université de Picardie Jules Verne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Bouvier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3913 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cézard, C., Sonnet, P. & Bouvier, B. Ironing out pyoverdine’s chromophore structure: serendipity or design?. J Biol Inorg Chem 24, 659–673 (2019). https://doi.org/10.1007/s00775-019-01678-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01678-x

Keywords

Navigation