Skip to main content
Log in

A new 4-(pyridinyl)-4H-benzo[g]chromene-5,10-dione ruthenium(II) complex inducing senescence in 518A2 melanoma cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

2-Amino-5,10-dihydro-5,10-dioxo-4(pyridine-3-yl)-4H-benzo[g]chromene-3-carbonitrile 5, a cytotoxic lawsone derivative, was reacted with [Ru(p-cymene)Cl2]2 to afford a new Ru(II) ‘piano-stool’ complex 6 which differed from its ligand 5 by a greater selectivity for highly invasive 518A2 melanoma cells over human dermal fibroblasts in MTT cytotoxicity assays, and by inducing senescence rather than apoptosis in the former. DNA is a likely cellular target of complex 6 as it bound, presumably non-covalently, to linear and circular double-stranded DNA in vitro and as ruthenium was found in the lysate of nuclei of treated 518A2 melanoma cells. It also caused a fivefold increase of reactive oxygen species in these cells, originating from a more persistent redox cycling as visualised by cyclic voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Garbe C, Peris K, Hauschild A, Saiag P, Middleton M, Bastholt L et al (2016) Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline—update 2016. Eur J Cancer 63:201–217

    Article  PubMed  Google Scholar 

  2. Pasquali S, Hadjinicolaou AV, Chiarion Sileni V, Rossi CR, Mocellin S (2018) Systemic treatments for metastatic cutaneous melanoma. Cochrane Database Syst Rev 2:CD011123

    PubMed  Google Scholar 

  3. Antonarakis ES, Emadi A (2010) Ruthenium-based chemotherapeutics: are they ready for prime time? Cancer Chemother Pharmacol 66:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rademaker-Lakhai JM, van den Bongard D, Pluim D, Beijnen JH, Schellens JH (2004) A phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clin Cancer Res 10:3717–3727

    Article  CAS  PubMed  Google Scholar 

  5. Hartinger CG, Jakupec MA, Zorbas-Seifried S, Groessl M, Egger A, Berger W et al (2008) KP1019 a new redox-active anticancer agent—preclinical development and results of a clinical phase I study in tumor patients. Chem Biodivers 5:2140–2155

    Article  CAS  PubMed  Google Scholar 

  6. Burris HA, Bakewell S, Bendell JC, Infante J, Jones SF, Spigel DR et al (2016) Safety and activity of IT-139, a ruthenium-based compound, in patients with advanced solid tumours: a first-in-human, open-label, dose-escalation phase I study with expansion cohort. ESMO Open 1:e000154

    Article  PubMed  Google Scholar 

  7. Allardyce CS, Dyson PJ (2001) Ruthenium in medicine: current clinical uses and future prospects. Platin Metals Rev 45:62–69

    CAS  Google Scholar 

  8. Biersack B (2016) Anticancer activity and modes of action of (arene) ruthenium(II) complexes coordinated to C-, N-, and O-ligands. Mini Rev Med Chem 16:804–814

    Article  CAS  PubMed  Google Scholar 

  9. Pettinari R, Petrini A, Marchetti F, Pettinari C, Riedel T, Therrien B et al (2017) Arene-ruthenium(II) complexes with bioactive ortho-hydroxydibenzoylmethane ligands: synthesis, structure, and cytotoxicity. Eur J Inorg Chem 12:1800–1806

    Article  CAS  Google Scholar 

  10. Schmitt F, Kasparkova J, Brabec V, Begemann G, Schobert R, Biersack B (2018) New (arene)ruthenium(II) complexes of 4-aryl-4H-naphthopyrans with anticancer and anti-vascular activities. J Inorg Biochem 184:69–78

    Article  CAS  PubMed  Google Scholar 

  11. Thota S, Rodrigues DA, Crans DC, Barreiro EJ (2018) Ru(II) compounds: next-generation anticancer metallotherapeutics? J Med Chem 61:5805–5821

    Article  CAS  PubMed  Google Scholar 

  12. Biersack B, Zoldakova M, Effenberger K, Schobert R (2010) (Arene)Ru(II) complexes of epidermal growth factor receptor inhibiting tyrophostins with enhanced selectivity and cytotoxicity in cancer cells. Eur J Med Chem 45:1972–1975

    Article  CAS  PubMed  Google Scholar 

  13. Pradhan R, Dandawate P, Vyas A, Padhye S, Biersack B, Schobert R et al (2012) From body art to anticancer activities: perspectives on medical properties of henna. Curr Drug Target 13:1777–1798

    Article  CAS  Google Scholar 

  14. Nadkarni KM (1908) Indian plants and drugs, 1st edn. Nortan & Co., Madras

    Google Scholar 

  15. Park EJ, Min KJ, Lee TJ, Yoo YH, Kim YS, Kwon TK (2014) β-Lapachone induces programmed necrosis through the RIP1-PARP-AIF-dependent pathway in human hepatocellular carcinoma SK-Hep1 cells. Cell Death Dis 5:e1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Magedov IV, Kireev AS, Jenkins AR, Evdokimov NM, Lima DT, Tongwa P et al (2012) Structural simplification of bioactive natural products with multicomponent synthesis. 4H-pyrano-[2,3-b]naphthoquinones with anticancer activity. Bioorg Med Chem Lett 22:5195–5198

    Article  CAS  PubMed  Google Scholar 

  17. Benimetskaya L, Ayyanar K, Kornblum N, Castanotto D, Rossi J, Wu S et al (2006) Bcl-2 protein in 518A2 melanoma cells in vivo and in vitro. Clin Cancer Res 12:4940–4948

    Article  CAS  PubMed  Google Scholar 

  18. Zerp SF, Van Elsas A, Peltenburg LTC, Schrier PI (1999) p53 mutations in human cutaneous melanoma correlate with sun exposure but are not always involved in melanomagenesis. Br J Cancer 79:921–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brabec V, Novakova O (2006) DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drug Resist Update 9:111–122

    Article  CAS  Google Scholar 

  20. Intini FP, Zajac J, Novohradsky V, Saltarella T, Pacifico C et al (2017) Novel antitumor platinum(II) conjugates containing the nonsteroidal anti-inflammatory agent diclofenac: synthesis and dual mechanism of antiproliferative effects. Inorg Chem 56:1483–1497

    Article  CAS  PubMed  Google Scholar 

  21. Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS et al (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One 8:e81162

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kapitza S, Jakupec MA, Uhl M, Keppler BK, Marian B (2005) The heterocyclic ruthenium(III) complex KP1019 (FFC14A) causes DNA damage and oxidative stress in colorectal tumor cells. Cancer 226:115–121

    CAS  Google Scholar 

  23. Park EJ, Choi KS, Kwon TK (2011) β-Lapachone-induced reactive oxygen species (ROS) generation mediates autophagic cell death in glioma U87 MG cells. Chem Biol Interact 189:37–44

    Article  CAS  PubMed  Google Scholar 

  24. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  25. Itahana K, Campisi J, Dimri GP (2004) Mechanisms of cellular senescence in human and mouse cells. Biogerontology 5:1–10

    Article  CAS  PubMed  Google Scholar 

  26. Debacq-Chainiaux F, Ameur RB, Bauwens E, Dumortier E, Toutfaire M, Toussaint O (2016) Stress-induced (premature) senescence. In: Rattan S, Hayflick L (eds) Cellular ageing and replicative senescence. Healthy Ageing and longevity, 4th edn. Springer, Cham, pp 243–262

    Google Scholar 

  27. Okada H, Mak TW (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4:592–603

    Article  CAS  PubMed  Google Scholar 

  28. Gire V, Dulic V (2015) Senescence from G2 arrest, revisited. Cell Cycle 14:297–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sikora E, Mosieniak G, Sliwinska MA (2016) Morphological and functional characteristics of senescent cells. Curr Drug Targets 17:377–387

    Article  CAS  PubMed  Google Scholar 

  30. Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113:3613–3622

    CAS  PubMed  Google Scholar 

  31. Svedman FC, Pillas D, Taylor A, Kaur M, Linder R, Hansson J (2016) Stage-specific survival and recurrence in patients with cutaneous malignant melanoma in Europe—a systematic review of the literature. Clin Epidemiol 8:109–122

    Article  PubMed  PubMed Central  Google Scholar 

  32. Toussaint O, Royer V, Salmon M, Remacle J (2002) Stress-induced premature senescence and tissue ageing. Biochem Pharmacol 64:1007–1009

    Article  CAS  PubMed  Google Scholar 

  33. Berns A (2002) Senescence: a companion in chemotherapy? Cancer Cell 1:309–311

    Article  CAS  PubMed  Google Scholar 

  34. te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62:1876–1883

    Google Scholar 

  35. Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y et al (1999) A senescent-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59:3761–3767

    CAS  PubMed  Google Scholar 

  36. Roninson IB, Broude EV, Chang BD (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Update 4:303–313

    Article  CAS  Google Scholar 

  37. Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA 92:4337–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ewald JA, Desotelle JA, Wilding G, Jarrard DF (2010) Therapy-induced senescence in cancer. J Natl Cancer Inst 102:1536–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nardella C, Clohessy JG, Alimonti A, Pandolfi PP (2011) Pro-senescence therapy for cancer treatment. Nat Rev Cancer 11:503–511

    Article  CAS  PubMed  Google Scholar 

  40. Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM, Lowe SW (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109:335–346

    Article  CAS  PubMed  Google Scholar 

  41. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al (2007) Senescence and tumor clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martin L, Schilder RJ (2006) Novel non-cytotoxic therapy in ovarian cancer: current status and future prospects. J Natl Comp Cancer Netw 4:955–966

    Article  CAS  Google Scholar 

  43. Winquist E, Waldron T, Berry S, Ernst DS, Hotte S, Lukka H (2006) Non-hormonal systemic therapy in men with hormone-refractory prostate cancer and metastases: a systemic review from the cancer care Ontario program in evidence-based care’s genitourinary cancer disease site group. BMC Cancer 6:112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee M, Lee JS (2014) Exploiting tumor cell senescence in anticancer therapy. BMB Rep 47:51–59

    Article  PubMed  PubMed Central  Google Scholar 

  46. Freund A, Orjalo V, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16:238–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Soengas MS, Lowe SW (2003) Apoptosis and melanoma chemoresistance. Oncogene 22:3138–3151

    Article  CAS  PubMed  Google Scholar 

  48. Zhuang D, Mannava S, Grachtchouk V, Tang WH, Patil S, Wawrzyniak JA et al (2008) C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 27:6623–6634

    Article  CAS  PubMed  Google Scholar 

  49. Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA et al (2006) Cellular Senescence in Naevi and immortalization in melanoma: a role for p16? Br J Cancer 95:496–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Michaloglou C, Vredeveld L, Soengas M, Denoyelle C, Kuilman T, van der Horst C et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724

    Article  CAS  PubMed  Google Scholar 

  51. Mhaidat NM, Zhang XD, Allen J, Avery-Kiejda KA, Scott RJ, Hersey P (2007) Temozolomide induces senescence but not apoptosis in human melanoma cells. Br J Cancer 97:1225–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R. S. thanks the Deutsche Forschungsgemeinschaft (DFG) for a grant (Scho 402/12-2), H. K., J. K. and V. B. were supported by the Czech Science Foundation (Grant 17–05302S).

Funding

Deutsche Forschungsgemeinschaft Grant Scho 402/12; Czech Science Foundation Grant 17–05302S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Schobert.

Ethics declarations

Conflicts of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2019_1677_MOESM1_ESM.pdf

Stability tests via 1H-NMR for compound 6; electrophoretic mobility shift assays; interaction with pBR322 plasmid DNA; uptake of complex 6 by 518A2 melanoma cells; cyclic voltammetry; caspase-3/7 activity assays; This material is available free of charge via the Internet at https://link.springer.com 1 (PDF 1103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gold, M., Mujahid, Y., Ahmed, K. et al. A new 4-(pyridinyl)-4H-benzo[g]chromene-5,10-dione ruthenium(II) complex inducing senescence in 518A2 melanoma cells. J Biol Inorg Chem 24, 647–657 (2019). https://doi.org/10.1007/s00775-019-01677-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01677-y

Keywords

Navigation